
© 2023 Henning Diedrich 1 confidential draft

LÆXON
LORE

Writing Lexon 0.3

LÆXON
MANUAL

0.3

This manual describes the workflow to cre-
ate and use Lexon digital contracts on the
Æternity blockchain. It covers writing, com-
piling and deploying of Lexon texts, and
how to use the Lexon Æternity Token, LÆX.

DISCLAIMERS

The information provided in this document is strictly for educational purposes.
There are no warranties, express or implied. Any use of this information is at
your own risk. The author does not assume and hereby disclaims any liability
to any party for any loss, damage, or disruption. See https://www.gnu.org/li-
censes/gpl-3.0.txt

Lexon is not an all-purpose human language. An unambiguous language is
desirable for programming and lawmaking but less so for other purposes of
human communication.1
Lexon compiler output must be audited before using it in production. There
is no warranty for fitness for any purpose, nor any other warranty, for the
compiler output. See the License text at https://lexon.org/license.
The described tokens are not for investment; they may not work as a store of
value. There may be no secondary market for the tokens. The token is not
bought back by the issuer. The token does not represent a share in a company
or IP. It does not make eligible for any payment.

LICENSE

There is no claim to the products of the Lexon compiler. Any text you write
in Lexon and anything you create using the Lexon compiler is yours or deter-
mined by arrangements you made.

This document, including its appendices, is licensed under the GNU Public
License (GPL) version 3. The license text can be found at
https://www.gnu.org/licenses/gpl-3.0.txt. Basically, you can quote, share or
modify this document but must give credit and allow the same.

1 Cf. appx. The Principles of Newspeak in G. Orwell, 1949, Nineteen-Eighty-Four. Orwell essentially argues that words

must be ambiguous to be meaningful.

© 2023 Henning Diedrich 5 1.0

INDEX

DISCLAIMERS .. 4
LICENSE ... 4
INDEX ... 5

INTRODUCTION ... 6

QUICK START .. 7

MOVING PARTS .. 8

AUTHORING ... 9
TAXONOMY OF DIGITAL CONTRACTS ... 9
GRAMMAR .. 11
THE DOUBLE EDGE OF LANGUAGE .. 18
NEXT STEPS ... 19
VOCABULARY ... 20
WORD LIST .. 23
EXAMPLES ... 40

COMPILER .. 47
OPERATION .. 47
EXAMPLE ... 48
OPTIONS ... 50
INTERNAL MODEL .. 52
TOKEN .. 53

TUTORIAL .. 54
PREREQUISITES ... 54
COMPILATION ... 55
DEPLOYMENT ... 57

APPLICATION ... 63

CONCLUSION ... 65

APPENDIX .. 66
LEXON GRAMMAR FORM .. 66
HARDENED EXAMPLE ... 67
ROBOTIC LAWS ... 67

INDICES .. 68
WORD LIST .. 69

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 6 1.0

INTRODUCTION
Lexon is a plain-text programming language. This means that it reads like
natural English and digital contracts written in Lexon that run on the
blockchain can be read and understood by anyone, without requiring any
knowledge of programming.
Lexon’s digital contracts inherit their unstoppable power from smart contracts. That they are also
readable by anyone – not just programmers – is their interface to the real world. They connect to the
legal system, for far-reaching consequences: a digital contract cannot be broken and is a legal agreement.

To work its magic, Lexon perfects an AI language processing approach that had been researched for
decades. Its contribution is ‘Zen-like,’ reducing permutation steps to stay closer to how human thought
works: its internal data model retains human-readability. This makes Lexon transparent as well as pre-
cise and provides unparalleled agency.

The example contract below is a minimal escrow that is an agreement between a payer of Æ coins, and
a receiver. The notary decides whether the tokens should be paid out to the receiver or sent back to the
payer. This could be the reaction to a corresponding deal being aborted, goods not arriving or being
returned for any reason. The contract looks only at the payment side, with the notary in the role of the
oracle, i.e. the connection from the blockchain to the real world.

As is, the contract could serve many different use cases. There could be many variations, including a
scenario that works without oracles.

LEX Escrow.

“Payer” is a person.
“Receiver” is a person.
“Notary” is a person.
“Fee” is an amount.

The Payer pays an Amount into escrow, appoints the Receiver, appoints the Notary, and fixes the Fee.

CLAUSE: Pay Out.
The Notary may pay from escrow the Fee to themselves, and afterwards pay the remainder of the
escrow to the Receiver.

CLAUSE: Pay Back.
The Notary may pay from escrow the Fee to themselves, and afterwards return the
remainder of the escrow to the Payer.

Source 1 – A Lexon digital contract example: Escrow.

In the following chapters, we will discuss this example’s grammar, compile this digital contract using
the online Lexon compiler and deploy it to the blockchain, and interact with it, using Æ Studio at
https://studio.aepps.com/.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 7 1.0

QUICK START

As an advanced crypto user, all you need to get started might be this:

To write your own digital contract, take an example and modify it. To understand the vocabulary and
grammar, dive into the interactive vocabulary and https://lexon.org/vocabulary and use color high-
lighting.

To deploy and use a Lexon digital contract on the Æternity blockchain:

1. Paste a Lexon text into the text field of the Lexon compiler at http://lexon.org/compiler.

2. Click compile.

3. Copy + paste	the result into a new source tab in the Æ Studio at https://studio.aepps.com.

4. Connect with the Superhero Æ wallet (or use the testnet without wallet).

5. Set an amount of Æ at the top, fill in the required fields below the deploy button + click deploy.

6. Interact with the contract using Æ Studio’s function calls that appear below the deploy button.

7. Check state changes in Æ Studio’s log and at the blockchain browser aeScan at http://aescan.io.

These steps are described and illustrated in detail in the tutorial from page 9.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 8 1.0

MOVING PARTS
Lexon
Lexon unites developments in computational law, cryptography, computer sciences, AI2 and linguistics
to achieve long-sought milestones in each field: digital contract analysis , legally enforceable
smart contracts, sel f-documenting code, deterministic language processing, and an executable
human language. The resulting accessibi l ity and agency open new ways even to think about some
of the more intractable-looking challenges of our times and solve them. It is perfect for trustless private
law, i.e., legally enforceable agreements implemented on the blockchain.

Digital Contracts
Blockchain smart contracts written in Lexon are called digital contracts. While lawmakers will need time
to understand their new options, Lexon shines as a language for private law, i.e., contracting. Digital
contracts are legally enforceable agreements.

Æternity
Æternity is a layer-1 blockchain that is particularly well suited for fast and economic smart contracts.3
It improves on Ethereum’s functionalities, cleaning up concepts, reducing pitfalls and reduces response
times to the point where it becomes feasible that end users of apps can interact directly with the chain.
Æternity was started by a co-inventor of Ethereum, and implemented by most experienced telco and
fintech engineers.

Sophia
Sophia4 is the language that smart contracts are programmed in for the Æternity blockchain. It is a
purpose-built, 3rd generation functional language, designed to be as clear and safe as possible. Lexon
users, however, do not need to learn Sophia to be able to create smart contracts.

Lexon Compiler
The Lexon compiler5, 6 accepts text adhering to Lexon’s grammar and transposes this natural-language
code to the functional language Sophia. It is a web3 æpp interacting with the Æternity blockchain to
help creating new web3 æpps for this chain. It’s payment mechanism is also implemented on Æternity.

LÆX Tokens
Lexon Æternity tokens (LÆX)7 provide metered access to the online Lexon compiler. One token buys
one compilation of a Lexon text. The token is implemented as a smart contract on the Æternity block-
chain and conforms to its fungible token standard AEX-9. It can be purchased at https://lexon.org.

2 Lexon falls into the mould of symbolic AI, not machine learning (ML). Contrary to ML, Lexon is designed to provide

agency, transparency, and precision. ML is complementary to Lexon: Lexon is a powerful device to control ML, while
ML in turn will soon help creating Lexon texts.

3 See https://aeternity.com/aeternity-101
4 See https://aeternity.com/#sophia
5 A compiler is basically a program that helps create other programs. It processes human-written files to create output

that can be executed by a computer.
6 Online at http://lexon.org/compiler
7 See Token, from pg. 22.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 9 1.0

AUTHORING
This chapter discusses the linguistics of Lexon, its grammar & vocabulary.

TAXONOMY OF DIGITAL CONTRACTS

If we call a program running on a blockchain a ‘smart contract’, and the contract as lawyers know it
‘legally enforceable contract’ then we have three cardinal relationships that should be differentiated:8

Digitally enhanced: a legally enforceable contract is in part automated by a smart contract. The legally
enforceable contract ‘includes’ the smart contract and conventional prose spells out parts that are out-
side the scope of the smart contract.

Digitally expressed: the smart contract is the legally enforceable contract. The code of the smart contract
is the entire text of the legally enforceable contract. This becomes possible through the use of the Lexon
language.

Digitally produced: a smart contract running on the blockchain initiates a multitude of legally enforce-
able contracts, one with each person interacting with the smart contract, which we will call a Contract
Factory. This is a common pattern that holds e.g., for a crowdfunding smart contract.

In short:

digitally enhanced ⟶ the program is a part of a contract.

digitally expressed ⟶ program and contract are the same.
digitally produced ⟶ the program produces contracts.

Table 1 – Types of Digital Contracts

8 This graphic & pg. 8 - 9 are in the public domain. 2020, H. Diedrich, C. L. Reyes.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 10 1.0

There are nuances and overlaps but it is important to note that smart contracts and legally enforceable
contracts are neither necessarily the same nor necessarily two different documents.

Digital Enhancement
The typical ‘Ricardian Contract’9 setup joins traditional contract prose with a blockchain smart con-
tract, e.g. written in Ethereum’s Solidity and thus not readable for non-programmers. In this way,
human-readable prose is joined with a blockchain component that will automatically perform part of
the agreement. An example could be a loan with collateral where the exact conditions of the contract
are laid out in the traditional contract’s prose, while the payments due for repayment are calculated by
a smart contract and automatically deducted from the lender’s Ether10 account. The off-chain prose
might deal with exceptions e.g. the case that the lender stops access to his account. This constellation
then is what we call digital enhancement. Lexon code can be used for these situations, too. And in fact,
we predict that it will replace Solidity for most such cases because it will have strong upsides to do so.

Digitally Expressed
But the novelty with Lexon is that the legal contract prose can now itself be the program that is
executed on the blockchain. Program and contract can virtually be the same as can be observed in the
example on pg. 6, where a simple escrow agreement is articulated in Lexon, with the document serving
the dual purpose of expressing the ‘meeting of the minds’ on the one hand but being a program on the
other, ready for deployment to the blockchain as is. We call this digitally expressed, because there is now
only one document that serves as legally enforceable contract that one would show to a judge if needed,
and doubles as program on the blockchain.

Digitally Produced & Contract Factory
Very often, however, Lexon code will be used to program a system that offers multiple individuals to
enter into contracts, which are each created ad hoc, e.g. at the time a prospect signs off on a purchase,
or a membership in a DAO. In this case, one smart contract results into multiple legal agreements. A
useful example for this pattern is a ticket vending machine: such a machine can extend an offer to
potential buyers of a ticket, e.g. for public transport. When a buyer puts money into the machine it will
‘decide’ whether to issue the ticket or not. The money has to be enough, the machine needs to check
some other conditions, e.g. whether it still has enough paper to print on. Likewise, a smart contract
always has the ‘last word’ whether it will initiate an agreement based on the user input, or not. It can
send money back that was sent to it if a condition is not met as needed. The money might be too little,
or the deadline or a ceiling for a crowdfunding drive might have been passed. If all is good, the smart
contract will accept the offer of the user and a legal agreement commences, usually between the user
and the creator of the smart contract. The result is a set of many individual cookie cutter contracts e.g.
between many buyers and one seller. We want to call smart contracts that act like this Contract Factories
– borrowing from a well-known pattern name in computer sciences – and the individual legally enforce-
able contracts digitally produced.

9 Ian Grigg, 1996 – https://en.wikipedia.org/wiki/Ricardian_contract
10 Ether is the name of the crypto currency of the Ethereum blockchain.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 11 1.0

GRAMMAR

Names
Names can consist of multiple words, i.e., include spaces. Clauses are often named for partial sentences,
e.g., "Service Performed as Agreed," so that they can organically be built into other sentences.11 This
is a major pillar on which Lexon's readability rests. Within those names, no restrictions apply. The
effective vocabulary across Lexon contracts is therefore of unlimited size.

Changing the definition names does not change the logic of the contract.

LEX Payment.

"Payer" is a person.
"Payee" is a person.
"Payment" is an amount.

The Payer pays a Payment to the Payee.

This is a payment, nothing more. The Payer pays an amount to the Payee. This is not even 'really' a contract,
because it is so simple.

LEX Transfer.

"Sender" is a person.
"Receiver" is a person.
"Sum" is an amount.

The Sender pays a Sum to the Receiver.

This is the same contract as above, just spelled out using different names. When this contract is signed
and deployed to a blockchain, the persons named will have to be named with their real names or at
least a blockchain address, to clearly identify them.

That comes later though. At the time of writing, this document is a template and the names defined
in it are placeholders. Are that is known is that they must be a person or an amount.

11 J

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 12 1.0

Synonyms
If you use a synonym verb, it does not change the logic of the contract.

LEX Transfer.

"Sender" is a person.
"Receiver" is a person.
"Sum" is an amount.

The Sender transfers a Sum to the Receiver.

This is the same contract as the previous one, just spelled out using a different verb with the same meaning:
transfer instead of pay.

Note that the verbs in Lexon are predefined and few. You cannot just invent them as with the
names (nouns). I.e. the names 'Sender', 'Receiver', and 'Sum' can be replaced by almost any other words
you can come up with. But for 'pay' the synonyms are precisely 'transfer' and 'return.' No other words
will work.

This is a fundamental difference between nouns and verbs in Lexon. Nouns can be chosen freely,
verbs need to be used as intended, looked up in examples or the reference to see what will work.

Neutral Names

LEX Transfer.

"A" is a person.
"B" is a person.
"C" is an amount.

A transfers C to B.

This is the same contract as the previous one, just reducing the definitions to neutral one-letter names.

Articles
Articles (a, an, the) can be left out.

LEX Payment.

"Payer" is person.
"Payee" is person.
"Payment" is amount.

Payer pays Payment to Payee.

Articles and some other words in Lexon are called 'fillers'. They have a big role in making a text easy to read for
a human being but are irrelevant to the automation of the contract on the blockchain. Obviously, articles can
fundamentally change the meaning of a contract to the human reader. It's on the writer to not abuse them. Reining
in the possibilities for abuse of fill words is a high priority for future Lexon tools (cf. pg. 18).

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 13 1.0

Sentence Structure
Lexon's basic sentence grammar follows that of English, requiring, in this order: subject, verb, object.
Verb and object are grouped together as predicate.

In the boxes below, square brackets [] mean 'optional' and the ellipsis … means 'potentially more of
the same'.

Sentence ⟶ Subject + Predicate [, Predicate …]

Predicate ⟶ Verb + [Object]

Fig 1 – Lexon Sentence Rule

These sentences are the main carrier of information in Lexon code. They form the body of RECITALS and
CLAUSES.

The choice of verbs in Lexon is very restricted, while subject and object can each be any blockchain
addresses – or legal person for that matter. Within a Lexon contract they will be given an arbitrary
name alluding to its function (e.g. Payer), which adds meaning for the reader.

The freedom to name variables any way you want is a trait Lexon shares with all modern program-
ming languages. Lexon goes further towards readability by not requiring any artificial style, like Camel
Case or Snake Case.12 It also allows spaces as part of the names, which enhances readability markedly.

Lexon also knows a number of passive constructs that operate on any given subject, e.g.: something
is certified.

Document Structure
Technically, the Lexon document structure is part of its 'grammar', because that's how computer lan-
guages are defined. This concerns everything beyond those parts that are corollaries of natural language
grammar. There is no such thing as a document structure in natural language, but there is in both
contracting and programming.

On the highest level, the Lexon code can be embedded into legal contract prose. Within the Lexon
parts then, the basic structure is:

Head + Definitions + Recitals + Clauses

Fig 2 – Lexon Simple Document Rule

12 Originally as convention in programming, the style of writing variable names: e.g., as firstName (Camel Case) or

first_name (Snake Case). The intent is to leave out spaces. Lexon though allows to write: First Name.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 14 1.0

The Escrow example reflects these parts:

LEX Escrow

"Payer" is a person.
"Payee" is a person.
"Arbiter" is a person.
"Fee" is an amount.

The Payer pays an Amount into escrow, appoints the Payee,
appoints the Arbiter,
and fixes the Fee.

CLAUSE: Pay Out.
The Arbiter may pay from escrow the Fee to themselves,
and afterwards pay the
remainder of the escrow to the Payee.

CLAUSE: Pay Back.
The Arbiter may pay from escrow the Fee to themselves,
and afterwards return the remainder of the escrow to the Payer.

Source 2 – Lexon document structure

This order makes it harder to write ambiguous agreements. It reflects a common sequence of the
parts of a paper contract.

The internal model that the compiler creates during the translation is shown in chapter INTERNAL
Model, pg. 52. It visualizes the relationships that the compiler actually ‘understands’ from the sentence
in Source 13, expressing a linguistic structure as a binary tree.

The reduced grammar of Lexon forces sentences to be written straightforwardly, even when nested
and verbose. The fact that the grammar is parseable by a computer guarantees mathematical unambi-
guity even though many redundant ways of expressing the same meaning have been enabled. The gram-
mar still provides a one-way funnel; the flexibility is not bidirectional: the same can be articulated in
many different ways but each way has only one meaning. It is exactly this that is achieved by limiting
English grammar to a controlled grammar.

A minimal contract can be very short and only needs to have the HEAD and one sentence of RECITAL
– or instead of a recital at least one CLAUSE.

However, as spelled out below, more complex Contract Factories (pg.10) will see the pattern of
head, definitions, recital, clauses repeated multiple times over: first within a section called TERMS, then
within one or more CONTRACTS sections.

The TERMS define all aspects that are true for the entire digital contract code. The CONTRACTS
describe individual agreements between only two parties. If more than one type of such agreement is
part of the system, there will be as many CONTRACTS sections.

 Head

 Definitions

 Recital

 Clause

 Clause

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 15 1.0

Lexon ⟶ Head + Terms + Contracts

Terms ⟶ Head + Definitions + Recitals + Clauses

Contract ⟶ Head + Definitions + Recitals + Clauses

Fig 3 – Lexon Complete Document Rules

This can be visualized as follows:

Fig 4 – Lexon Complete Document Rules (graphical)

Most elements given above are optional. Many digital contracts will be simple. This structure is anything
but random though and carries the more complex ones.

Within the individual CLAUSES, the pattern is:13

Clause ⟶ Head + Definitions + Permissions + Conditions + Statements.

Fig 5 – Lexon Clause Rule

13 This is due to change in the next version of Lexon.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 16 1.0

The above rule can also be expressed visually as follows:

Fig 6 – Lexon Clause Rule (graphical)

Beyond these rules, some terms in the Lexon vocabulary are irregular and have to be learned for each
individual term in the vocabulary. They are not used in surprising ways but cannot be described by a
pattern and sometimes cannot be used in all ways that natural English would allow for.

Example
The escrow example from pg. 6 consists of four parts:

• head
• definitions
• recitals
• clauses

Head

LEX Escrow Contract.

The head consists of the LEX keyword that marks the beginning of executable code, and the freely given
name after this keyword (in this case Escrow Contract) that identifies this contract for filing and mainte-
nance purposes. There can be more information spelled out in the head, such as a revision number and
a preamble, or a comment.

To have a keyword like LEX is useful also for the legal perspective of a digital contract. In the case
that the Lexon code is embedded, e.g. as schedule of a larger master agreement, it provides a clear
separation between the automated parts and the legal prose that might precede it. Because of this
keyword, LEX, Lexon digital contracts are NOT entirely seamlessly embedded in the larger document
prose that may surround them. But if push comes to shove, a judge would at any rate never be com-
pletely ignorant of the fact that there is automation in play with a digital contract. Therefore, it will
only help to have a clear indication of where the text relevant for automation starts, to reduce legal
attack vectors.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 17 1.0

An optional LEXON tag can occupy the next line. If it exists, it is followed by a version number that
indicates with which version of Lexon the code will work. This is a concession to the fact that Lexon is
software and evolving at a rapid pace. Like the name after LEX, this number simply helps keeping order.

A PREAMBLE is also optional. This keyword is followed by a high-level description of the contract. In
legalese, the 'preamble' is the introduction to a contract that gives context and motivation but is itself
not legally binding text. In Lexon, this text is neither legally binding nor part of the automation.

Such an extended head could look like this:

LEX Escrow Contract.
LEXON 0.2
PREAMBLE: This is a simple digital contract example.

Definitions

“Payer” is a person.
“Payee” is a person.
“Agent” is a person.
“Fee” is an amount.

Definitions are next. They are similar to what lawyers are used to from normal contracts – and which
programmers know as type declarations. Because this code example is really a template – i.e. not a
concrete instance of a concrete agreement yet – the concrete name, address, or blockchain address are
not yet known at the time of writing.14

Lawyers know the principle of copy-paste well, re-using contracts that have been written for one
client for a different client at a later point in time. In a similar fashion, any digital contract, before it is
deployed, really defines an entire class of possible look-alike contracts.

When a digital contract is deployed, made concrete, the real names and blockchain addresses are
provided.

Recitals

The Payer pays an Amount into escrow, appoints the Payee, appoints the Agent, and also fixes the Fee.

The Recital15 of a digital contract is code that is performed once at the very beginning, before any
clause can be executed.

This example is simplistic in that the payer sets it all up.

In a traditionally written contract, recitals list the actions taken that led the parties to enter into
the agreement. Lexon recitals are similar in that they provide the prerequisite foundation for the clauses
that follow. They are performed when the smart contract is signed by the creator and deployed to the
blockchain.

14 Also, Lexon is still in flux and lines like these will look different soon, more like one is used from contract templates in

textbooks or on the Internet.
15 In US law, the recital is the part of a contract that states the purpose of the agreement. It is intended to help inter-

preting the agreement. In the European Union, a recital is the part of a law that describes its motivation, ideally free
from jargon and politics.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 18 1.0

Clauses

CLAUSE: Pay Out.
The Agent may pay from escrow the Fee to themselves,
and afterwards pay the remainder of the escrow to the Payee.

CLAUSE: Pay Back.
The Agent may pay from escrow the Fee to themselves,
and afterwards return the remainder of the escrow to the Payer.

The last part here are the clauses that define possible outcomes. Payment is exclusively conditional on
action of the Agent here and can only go to the Payee or back to the Payer.

THE DOUBLE EDGE OF LANGUAGE

A caveat: there is nothing in the language itself that keeps the writer from using misleading definitions.
Language is not the right level to prevent fraud. Content checks are always one level above language.

LEX Payment.

"Payee" is person.
"Payer" is person.
"Payment" is amount.

Payee pays Payment to Payer.

The non-sensical swap of Payer and Payee in this example will confuse readers but the automation of
the contract will still work the same as in the examples before. The logical meaning of this code is
identical to the one shown before. It is just the labels that are misleading. But it is misleading only to
humans since the blockchain virtual machine does not understand the word 'Payer' or 'Payee' at any
rate. It does not even get to see them. It just understands what the action 'pay' is.

Lexon is not the promise – at all – that text cannot be misleading. Lexon is the promise that smart
contracts can be readable. And this example is only a mild instance from a wide spectrum of possible
criminal abuse. Unfortunately, there are more powerful ways to make Lexon contracts be as corrupt as
bad contracts in other blockchain languages: cleverly misleading definitions, convoluted text, intentional
off-by-ones. But ultimately, there is no way for a technical tool to understand if even a completely correct
contract proposes a completely fraudulent deal.

Allowing for readability is Lexon's first goal. Curbing opportunity for abuse through smart tools
will be a continuous task. But note that it is only thanks to the high readability of Lexon that this
question comes up in the first place. It would simply not be asked of other blockchain languages.

A judge may throw this contract out because it is going to be difficult to argue that switching the
words Payer and Payee was intentional and served a purpose that both sides agreed upon. The contract
will still execute 'correctly' on the blockchain, which is the reason why a future version of Lexon will
have an option for a judge or arbiter who has been given forum powers to reverse a smart contract with
minimal overhead and no consequences for other users of the blockchain that the contract runs on.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 19 1.0

NEXT STEPS

You get the basic idea at this point and might consider to check out online resources and cherry pick
across the rest of this document. The online editor at http://demo.lexon.tech is a great place to get
your own first digital contract deployed you will soon be able to actually use it for work. An online
tutorial is available, with up to date examples to deepen your learning at https://www.lexon.tech/tu-
torial.

Next, we'll be looking at the vocabulary but be sure to check out the online version for it.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 20 1.0

VOCABULARY

Word list: see pg. 23 and http://lexon.org/vocabulary. The links on the webpage help a lot.

The point of Lexon is that one does not have to learn it to read it. Learning to write Lexon is best done
by looking at examples rather than memorizing words. This is no different than how a human language,
or a programming language, or even legalese is picked up. The allowed use of a word, its context, are
what matters. As the Lexon grammar is a so-called controlled grammar, only some ways of using a word
are permitted, fewer than in normal English. Studying this is better learned by doing than done by
learning. In fact, it is particularly hard to 'unlearn' what you know is correct in normal language. But
you will – and that is a unique quality of Lexon – get a feel for what works.

This is the list of the known words in Lexon 0.316 that between themselves stand up the Lexon grammar.
Because you can define terms, Lexon’s vocabulary, and grammar complexity are unlimited from the
point of view of natural language. This is discussed below.

A AFTER AFTERWARDS ALL ALSO AMOUNT* AN AND ANNOUNCED APPOINT
APPOINTS AS AT AUTHOR AUTHORS BE BEEN BEING BINARY* CERTIFIED
CERTIFIES CERTIFY CLAUSE COMMENT COMMENTS CONTRACT CONTRACTS
CURRENT DATA* DAY DAYS DECLARE DECLARED DECLARES DEFINED EQUAL
EQUALING ESCROW FILED FILE FILES FIX FIXED FIXES FOR FROM GENERAL
GIVEN GRANT GRANTS HAS HERSELF HIMSELF HOUR HOURS IF IN INTO IS
ITSELF LEAST LEX LEXON LIES MAY MILLISECOND MILLISECONDS MINUTE
MINUTES MONTH MONTHS MYSELF NO NOT NOW OF OFF ON ONESELF OR
OURSELVES PASSED PAST PAY PAYS PER PERSON* PREAMBLE PROVIDED
REGISTER REGISTERS REMAINDER RESPECTIVE RETURN RETURNS SECOND
SECONDS SEND SENDS SIGNED SO TERMINATE TERMINATES TERMS TEXT
THAT THE THEMSELF THEMSELVES THEN THERE THEREFOR THEREFORE
THESE THIS TIME* TO TRUE WAS WEEK WEEKS WITH YEAR YEARS YES
YOURSELF YOURSELVES

These words can mostly be redefined as names but in that case can then not serve their original function
anywhere in the contract. The exception are category names (types, marked with an asterisk (*) above).
They cannot be redefined but can be used as generic names (see, e.g., amount). All words can be used
as part of names without losing their original, stand-alone function.

In the individual, per-word entries below, the first information about each word is, in what linguistic
capacity it is used in Lexon. This angle can help because English words frequently cover two ore more
different grammatical roles. The second line is technical, based on computer sciences designations for
the function that a word is used for in Lexon. It will more often than not be a helpful pointer for non-
programmers, too. In many cases, a description follows that describes the use of the word and
occasionally presents additional context. Note that the description often seems to explain the obvious,
because you know how English works. However, it can help to spell it out to learn to write Lexon. After
that, one or more examples show the word in the context of an examples sentence. This sentence can
be inspected in the context of a complete digital contract by clicking the link immediately below the
example sentence.

16 based on grammar version 0.2.20 / subset 0.3.8 alpha 79 - English / Reyes.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 21 1.0

At pg. 23 and at http://lexon.org/vocabulary you find a word list of Lexon 0.3. The webpage is a learning
tool to help grasp the bigger picture, not neccessarily to memorize individual words. To this end, one
thousand links are at your disposal below for fast navigation between words, examples and references.
You will find that clicking around reveals the deeper structure of Lexon, beyond words.

Breadth and Capacity
Lexon's vocabulary is unlimited because a) any noun or compound term can be defined and used in a
Lexon text, b) any phrase can be used as clause name and then used as part of a sentence elsewhere in
the text, and c) the Lexon compiler is extensible and keywords can and are added while the grammar
grows more powerful.

a) Definitions:
see Payer, Payee, etc. in the Escrow example.

b) Clauses:
see Noticed, Factually Breached, etc. in the Evaluation License example.

c) Keywords:
Cf. vocabulary 0.3 below vs. 0.2 in the 2020 Lexon Bible.

The latter is a slow and incremental process. A special, faster process has been prepared for verbs of
foundational importance – like move for robotics – that can sustain an entire domain. The two former
points are instant and happen when a user authors a Lexon text. Each Lexon digital contract therefore
has its own vocabulary, extending the dictionary on the fly while drafting; as integral and organic part
of the writing process. This is in keeping with the usual way that paper contracts are written: terms are
being defined for clarity, laying the ground for an agreement's text. That's exactly how Lexon's
vocabulary grows while penning a digital contract.

However, as it comes, before any definitions are added, Lexon 0.3 understands 91 keywords plus
variations, of which roughly half are processed in an interesting way. Many have only one specific
function as marker, like CLAUSE, or make the list solely by virtue of being part of a fix multi-word
term, with no independent function, like OFF in SIGN OFF.

To put the word count into perspective, a modern 3rd generation programming language like Rust has
about 50 reserved keywords, which are mostly used in a rigid, less interesting way. Beginner's English is
said to consist of about 300 words, the Basic English world language project17 has about 850. These
latter counts include many nouns; Lexon's vocabulary contains almost no nouns because these are as a
rule defined by the writer of a Lexon text and the Lexon compiler understands them from their function
as implied by the rest of the text. This is a fundamental aspect of Lexon's approach and the reason why
the Lexon compiler needs to 'understand' relatively few words out of the box. The nouns and phrases
that a user adds are inevitably what gives a text depth. The way that definitions work, the compiler
learns the role of the new words on the go and recognizes them in the text from that point on. Clause
names, however, can be the most interesting because they are the way to insert any complexity of
grammar, which can make Lexon texts look rich and elegant. This is a powerful design choice that serves
to include language constructs outside of the limit up to which the controlled grammar has to be
observed – offering instead of a hard stop, freedom to be fully creative within the safety of a well defined
reference frame. Lexon 'understands' such phrases (the clause names) en block, obviously, because the
clause itself defines their meaning. The (multi-word) name of a clause's internal grammatical
composition is not analysed. The way that the processing of clause names is isolated from the rest of
the text is making it possible to mix these monolithic elements with the bulk of the text that the Lexon
compiler processes word-for-word, i.e., 'more truely understands'. This combination is a pragmatic way
to empower the users to add complexity without having to think about any controlled grammar rules,
but importantly also: to freely add vocabulary. The new words are baked into the specific grammatical
way that they are presented (in the clause name). They need not be explained further. This mode of
extension makes perfect sense for Lexon. 3rd generation programming languages generally allow to add

17 Basic English – https://simple.wikipedia.org/wiki/Basic_English.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 22 1.0

variable names and add types. But they can never reach beyond their fix grammar. Lexon, in contrast,
accepts any grammatical extension through the freedom it offers in naming clauses. In this, there is not
even a requirement to avoid the initial 91 words that Lexon knows when creating compound new
compositions.

But the list of initial words cannot be redefined. It is therefore on the one hand desirable that it includes
few nouns. The reason that Lexon, on the other hand, has a larger basic vocabulary than, e.g., Rust is
that Lexon's grammar is designed to enable multiple ways of expressing the same meanning, to make
writing more intuitive, and to allow for more fluid, natural-appearing texts. This does not mean that
Lexon's grammar is ambigious, i.e., that the same sentence could have multiple meanings. It only means
that the same meaning can be expressed by differently worded sentences. This is normal for any
programming language, and only some developer communities have the ambition to adhere to a style at
all times that defines the one, 'right' way for anything that could be expressed. This is always only a
convention though.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 23 1.0

WORD LIST

The entries are based on the grammar version 0.2.20 / subset 0.3.8 alpha 79 - English / Reyes.

For an interactive version of this word list, visit http://lexon.org/vocabulary.

A, AN 24
AFTER 24
AFTERWARDS 24
ALL 24
ALSO 24
AMOUNT 24
AND 24
ANNOUNCED 25
APPOINT, APPOINTS . 25
AS 25
AT 25
AUTHOR, AUTHORS ... 25
BE 25
BEEN 26
BEING 26
BINARY 26
CERTIFIED 26
CERTIFIES, CERTIFY .. 26
CLAUSE 26
COMMENT, COMMENTS
 27
CONTRACT,
CONTRACTS 27
CURRENT 27
DATA 27
DAY, DAYS 28
DECLARE, DECLARES 28
DECLARED 28
DEFINED 28
EQUAL 28
EQUALING 28
ESCROW 29
FILED 29
FILE, FILES 29
FIX, FIXES 29
FIXED 30

FOR 30
FROM 30
GENERAL 30
GIVEN 30
GRANT, GRANTS 30
HAS 30
HERSELF, HIMSELF 30
HOUR, HOURS 30
IF 31
IN 31
INTO 31
IS 31
ITSELF 31
LEAST 31
LEX 32
LEXON 32
LIES 32
MAY 32
MILLISECOND,
MILLISECONDS 32
MINUTE, MINUTES 32
MONTH, MONTHS 32
MYSELF 33
NO 33
NOT 33
NOW 33
OF 33
OFF 33
ON 33
ONESELF 33
OR 33
OURSELVES 34
PASSED 34
PAST 34
PAY, PAYS 34
PER 34

PERSON 35
PREAMBLE 35
PROVIDED 35
REGISTER, REGISTERS
 35
REMAINDER 35
RESPECTIVE 35
RETURN, RETURNS ... 35
SECOND, SECONDS 36
SEND, SENDS 36
SIGNED 36
SO 36
TERMINATE,
TERMINATES 36
TERMS 36
TEXT 37
THAT 37
THE 37
THEMSELF,
THEMSELVES 37
THEN 37
THERE 37
THEREFOR,
THEREFORE 37
THESE 38
THIS 38
TIME 38
TO 38
TRUE 38
WAS 38
WEEK, WEEKS 38
WITH 39
YEAR, YEARS 39
YES 39
YOURSELF,
YOURSELVES 39

© 2023 Henning Diedrich 24 1.0

A, AN
indefinite article
no op

Articles can be left out with no change in mean-
ing. They are optional to increase readability.

They can be omitted, because the name they
precede must always be unambigous on its own.
This is familiar practice with paper contracts.

Same goes for the, this, these.

The Payer pays an Amount into escrow, appoints
the Payee, appoints the Arbiter, and fixes the Fee.

escrow.lex

AFTER
timewise prepostion
time operator

After is used to calculate a point in time, rela-
tive to a given one.

"Termination Period" is defined as 365 days after
the Termination Statement Time.

statement.lex

For more on how to use time, see hours and
days.

AFTERWARDS
adverb
causal concatenation

Keyword that introduces temporal order, which
is not a default in Lexon.

Separate sentences are performed independently
of each other, declaratively, rather than one af-
ter the other. Afterwards serves to bind state-
ments into one sentence and to establish that
the phrase following it is performed only after
all side effects of the phrase before it have been
established.

To illustrate by example, in the Lexon sentence
given below, the remainder is what remains af-
ter the Fee mentioned before afterwards has
been deducted.

Cf. THEREFORE.

The Arbiter may pay from escrow the Fee to
themselves, and afterwards return the remainder
of the escrow to the Payer.

escrow.lex

ALL
adjective
quantifier

Only with CONTRACTS.

All contracts means all digital contracts in a
contract system. This includes the main con-
tract as well as the covenants, or subcontracts.

ALSO
adverb
no op

Only appears with AND.

And also is synonymous to AND.

AMOUNT
noun
type

Defines that a name stands for an amount. In
the example, Digital Asset Collateral is marked
as being used as the handle for a specific number
in the document.

"Digital Asset Collateral" is an amount.

statement.lex

Amount can also be used as a name itself, with-
out being first defined. It can only stand for an
amount – i.e., for a number and not a text or a
time – and Amount must be spelled with a cap-
ital 'A' in this case.

The Payer pays an Amount into escrow, appoints
the Payee, appoints the Arbiter, and fixes the Fee.

escrow.lex

AND
conjunction
logical and procedural operator

Concatenates actions ...

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 25 1.0

The Payer pays an Amount into escrow, appoints
the Payee, appoints the Arbiter, and fixes the Fee.

escrow.lex

... as well as logical expressions.

A phrase that contains and is true if the part
left and the part right of the and are true. There
can also be multiple parts, each separated by
and. All of them need to be true for the entire
expression to be true.

"Factually Breached" is defined as: this License is
Commissioned and the Comment Text is not fixed,
or this License is Published and there is no
Permission to Comment and the Notice Time lies
at least 24 hours in the past.

evaluation.lex

For precedence and the interplay between and
and or, see or.

ANNOUNCED
adjective
truth value

Functions like FIXED.

APPOINT, APPOINTS
verb
parameter assignment operator

Expresses that the subject of the sentence will
determine what the specified object's names will
mean concretely. In the example, who the Payee
and the Arbiter are.

Functions like fix, see additional notes regarding
the subject there.

The Payer pays an Amount into escrow, appoints
the Payee, appoints the Arbiter, and fixes the Fee.

escrow.lex

Functional synonym to certify, declare, file, fix,
grant, and register.

AS
conjunction
value assignment operator part

Assigns the value of the expression to its right
to the name on its left.

The Secured Party may file a Termination
Statement, and certify the Termination Statement
Time as the then current time.

statement.lex

As can also make a name true that was defined
as a binary. In this example, License serves as
an object that means the entire contract system,
which ultimately is a redundant scope. The rel-
evant mutation is that Commissioned becomes
a fact, i.e., true.

The Licensor may certify this License as
Commissioned.

evaluation.lex

AT
preposition
quantifier

Only in conjunction with LEAST.

"Factually Breached" is defined as: this License is
Commissioned and the Comment Text is not fixed,
or this License is Published and there is no
Permission to Comment and the Notice Time lies
at least 24 hours in the past.

evaluation.lex

AUTHOR, AUTHORS
noun
keyword

The information after the AUTHOR(s) keyword
is expected to be the name(s) of the creator(s)
of the Lexon text. They are meta data, not
parsed, and not used in the document itself.

As a convention, author and authors are usually
spelled in uppercase.

AUTHORS: FLORIAN IDELBERGER,
HENNING DIEDRICH

evaluation.lex

BE
verb
assignment

Used with a meaning like shall.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 26 1.0

Functions like IS and can be used synony-
mously. The linguistic difference is irrelevant for
the machine.

"Noticed" be defined as a Notice Time being
fixed.

BEEN
verb
comparison operator

Appears only in conjunction with HAS.

Has been functions like BEING.

The Arbiter may, if the Notice Time has been
fixed, return the Fee to the Seller.

BEING
present participle
comparison operator

Compares the expression to its left with the ex-
pression on its right and results in everything
together being TRUE or FALSE.

In the example, being tests Notice Time for
whether it had been fixed before. Noticed will
be true exactly when Notice Time is known, and
false if, no value has been given for Notice Time
before at any point during the lifetime of the
contract.

"Noticed" is defined as a Notice Time being fixed.

evaluation.lex

BINARY
adjective
type

Defines a name as standing for a binary value,
e.g., YES or NO, or TRUE or FALSE.

Note that an undefined binary name is consid-
ered to have the value FALSE. Declaring a name
sets it to TRUE. Likewise, testing whether a bi-
nary name is declared, checks whether it is
TRUE.

"Default" is a binary.

statement.lex

CERTIFIED
adjective
«defined»

Expresses that a name has a value assigned, i.e.,
is not unbound or undefined.

In the example, being tests Notice Time for
whether it had been certified before. Noticed
will be true exactly when a Notice Time is
known, and false if no value has been given for
Notice Time before, at any point during the life-
time of the contract.

Functions like FIXED.

"Noticed" is defined as a Notice Time being
certified.

CERTIFIES, CERTIFY
verb
assignment operator

Expresses that the subject of the sentence will
determine what the specified object's names will
mean concretely. In the example, who the Payee
and the Arbiter are.

Functions like fix, see additional notes regarding
the subject and invocation there.

The Filing Office may certify the File Number.

statement.lex

Functional synonym to appoint, declare, file, fix,
grant, and register.

CLAUSE
noun
function keyword

Signals the start of a clause. A colon must fol-
low, and the name of the clause. Then, the
statements that constitute the clause.

Almost every digital contract has one or more
clauses. Only in rare, simplistic cases does a
contract have only a recital.

Either a clause's name is used to instigate ac-
tions that change the state of the contract:

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 27 1.0

CLAUSE: Pay Back.
The Arbiter may pay from escrow the Fee to
themselves, and afterwards return the remainder
of the escrow to the Payer.

escrow.lex

Or, a clause name can itself be a value, if the
clause uses defined.

The concrete meaning of the name of such
clause is dynamic. That is, the concrete meaning
of the clause name is not assigned once and for
all at any point in time. Instead, whenever the
clause name is used elsewhere in any context,
the expression right-hand of defined is re-evalu-
ated for its now current result, which is then the
meaning, or value, of that clause name.

Clause: Termination Period.
"Termination Period" is defined as 365 days after
the Termination Statement Time.

statement.lex

The clause name can be used as an expression
in the context of other clauses, i.e the name can
be used like a value.

The example below uses the name Termination
Period that is defined in the example above.

The Filing Office may, if the Termination Period
has passed, terminate this contract.

statement.lex

COMMENT, COMMENTS
noun
comment keyword

Start of comments that are not translated by
the compiler.

Functions like PREAMBLE but can be used
multiple times in different places.

Lexon is self-documenting, which greatly dimin-
ishes the role of comments. They should be used
sparingly or not at all. They can help to explain
a more convoluted set of conditions, as can be
found in contracts that need to spell out things
in detail, including all relevant fringe cases.

Care should be taken to clarify that a comment
is not part of the legally binding text; but is
written to provide motivation or explain com-
plex aspects with a broad brush, to make the
contract easier to understand for a human

reader. Such clarification may be added as part
of the comment itself.

As a convention, COMMENT is usually spelled
in uppercase.

COMMENT: A license can be for any tangible or
intangible good.

Cf. PREAMBLE.

CONTRACT,
CONTRACTS
noun
self reference

Contract as well as all contracts stand for the
contract (system) itself, including all covenants
(subcontracts)

Contract can either be used to define a proper
name for the digital contract:

"Financing Statement" is this contract.

statement.lex

Or, Contract as well as all contracts can be used
as object to terminate.

The Filing Office may, if the Termination Period
has passed, terminate this contract.

statement.lex

CURRENT
adjective
time value

Only appears with time.

The Filing Office may fix the Initial Statement
Date as the current time.

statement.lex

DATA
noun
type

Defines a name as standing for a piece of data.

Data can be a text, a number, a hash, a block-
chain address, or an id of any type.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 28 1.0

"File Number" is data.

statement.lex

DAY, DAYS
noun
time unit

Used to describe a duration.

A duration can be used to calculate a point in
time relative to another point in time. For ex-
ample, relative to now or in the past, or – as in
the example below - relative to a name that
means a specific time.

"Termination Period" is defined as 365 days after
the Termination Statement Time.

Cf. hours.

DECLARE, DECLARES
verb
truth assignment operator

Used to state that something has happened, or
is true.

Technically, declare assigns the truth value,
true, to a name. That name must have been de-
fined (see is) as a binary.

In the example this means that Default is now
true. Note that before that, it was false.

Cf. binary.

The Secured Party may declare Default.

statement.lex

DECLARED
adjective
«true»

Synonym to true.

In the example, the fact that Default has been
declared is the same as saying that it is true
that Default happened.

The Filing Office may, if Default is declared, pay
the Digital Asset Collateral to the Secured Party.

statement.lex

DEFINED
adjective
assignment operator

Always used with IS, or BE and AS, to describe
the meaning of the name to its left by means of
the expression on its right.

The meaning is dynamic. That is, the concrete
meaning is not assigned once and for all at any
point in time. But instead, whenever the name
that is being defined is used elsewhere in any
context, the expression right-hand of defined is
re-evaluated for its now current result, which is
in that moment the meaning of that name.

CLAUSE: Termination Period
"Termination Period" is defined as 365 days after
the Termination Statement Time.

statement.lex

This type of sentence is the essence of a partic-
ular type of CLAUSE whose name can be used
like an expression, i.e., the name of such clause
can be used like a value in the text of another
clause.

The example below uses the name Termination
Period that is defined in the example above.

The Filing Office may, if the Termination Period
has passed, terminate this contract.

statement.lex

EQUAL
comparison operator
equivalence of values

Forms an expression that is true if the values
left and right of equal are the same.

Near synonym of equaling.

"Parity" is defined as the Count of X being equal
to the Count of Y.

EQUALING
comparison operator
equivalence of values

Forms an expression that is true if the values
left and right of equaling are the same.

Near synonym of equal.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 29 1.0

"Parity" is defined as the Left Side equaling the
Right Side.

ESCROW
noun
system variable

The internal token escrow of a digital contract.

It is mostly used as object to the predicate pay.

Using it with remainder results into a number:
the amount of tokens left in the escrow at that
point in time.

The Arbiter may pay from escrow the Fee to
themselves, and afterwards pay the remainder of
the escrow to the Payee.

escrow.lex

FILED
adjective
«defined»

Asking whether a name is filed constitutes an
expression that is true in case the name had a
value assigned to it previously. The expression
is false if the name had not been defined before
during the lifetime of the contract.

... the Continuation Statement is filed ...

statement.lex

To clarify, it does not matter if there is text
somewhere in the contract that gives a name a
concrete meaning. What matters is whether for
a specific, live contract between concrete parties
and with a concrete state, it so happened that
it is clear what a specific name stands for, or,
that what the name stands for exists.

If you take this example ...

The Filing Office may, if the Continuation
Statement is filed, fix the Continuation Statement
Date.

statement.lex

... the phrase the Continuation Statement is
filed is true, if what is described in the clause
shown below ever happened. Concretely, if the
Secured Party has filed the Continuation State-
ment.

Clause: File Continuation.
The Secured Party may file the Continuation
Statement.

statement.lex

Note that in this example contract, the Contin-
uation Statement is defined as a binary. That
means that it does not have any specific content
beyond existing or not. The filing of it 'is' the
statement that continuation is desired.

FILE, FILES
verb
parameter assignment operator

Synonym to fix.

The Secured Party may file the Continuation
Statement.

statement.lex

FIX, FIXES
verb
parameter assignment operator

Indicates that the subject of the sentence will
be who determines the meaning of the named
objects.

Note that this cuts both ways. The subject
might itself be determined by the act of fixing
the objects: if it had not been settled yet who
the name of the subject refers to, then whoever
performs the fixing is from that point on named
like the subject of this sentence. The name
sticks for the remaining lifetime of the contract.
Accordingly, in the example below, if the role of
the Filer had not been determined, the person
who is fixing the Filing Office etc. becomes the
Filer. The way to prevent this automatism is to
use may.

The values that are assigned to the objects of
the sentence are given by the subject when that
person acts to invoke this clause.

The Filer fixes the Filing Office, fixes the Debtor,
fixes the Secured Party, and fixes the Collateral.

statement.lex

Functional synonym to appoint, certify, declare,
file, grant, and register.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 30 1.0

FIXED
adjective
«defined»

Expresses that a name has a value assigned, i.e.,
is not unbound or undefined. In the example,
being tests Notice Time for whether it had been
fixed before. Noticed will be true exactly when
a Notice Time is known, and false if no value
has been given for Notice Time before, at any
point during the lifetime of the contract.

Functions like CERTIFIED.

"Noticed" is defined as a Notice Time being fixed.

evaluation.lex

FOR
preposition
no op

Only in conjunction with FILE or FILED.

The terms FILE FOR or FILED FOR function
like FILE or FILED without FOR.

FROM
preposition
transfer origin marker

Only in conjunction with ESCROW.

The Arbiter may pay from escrow the Fee to
themselves, and afterwards return the remainder
of the escrow to the Payer.

escrow.lex

GENERAL
adjective
no op

Optional specification to TERMS.

GIVEN
preposition
conditional keyword

Following statements are executed only if the
immediately following condition is true.

Appears only together with THAT.

GIVEN THAT is a synonym to IF.

The Filing Office may, given that the Continuation
Window Start has passed, send the Notification
Statement to the Secured Party.

GRANT, GRANTS
verb
truth assignment operator

Synonym to fix.

The Licensee may grant the Permission to
Comment.

evaluation.lex

HAS
auxiliary verb
part

Only in conjunction with BEEN or PASSED.

The Filing Office may, if the Continuation Window
Start has passed, send the Notification Statement
to the Secured Party.

statement.lex

HERSELF, HIMSELF
reflexive pronoun
automatic reference

Refers to the subject of the sentence.

Functions like THEMSELF.

HOUR, HOURS
time unit
time constant of 3600 seconds

Used to describe a duration.

A duration can be used to calculate a point in
time relative to another point in time. For ex-
ample, relative to now or in the past.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 31 1.0

"Factually Breached" is defined as: this License is
Commissioned and the Comment Text is not fixed,
or this License is Published and there is no
Permission to Comment and the Notice Time lies
at least 24 hours in the past.

evaluation.lex

Cf. days.

IF
conjunction
assertion

Following statements are executed only of the
immediately following condition is true.

The condition starts after if and ends with a
comma, which can be followed by an optional
then.

The statements follow after that.

In this example ...

The Filing Office may, if the Continuation Window
Start has passed, send the Notification Statement
to the Secured Party.

statement.lex

... the condition is:

the Continuation Window Start has passed

... the statements are:

send the Notification Statement to the Secured
Party

IN
preposition
no op

Only in conjunction with PAST.

"Factually Breached" is defined as: this License is
Commissioned and the Comment Text is not fixed,
or this License is Published and there is no
Permission to Comment and the Notice Time lies
at least 24 hours in the past.

evaluation.lex

INTO
preposition
operator part

Used with NOTIFY, SEND and PAY.

The Secured Party may pay a Reminder Fee into
escrow.

statement.lex

IS
verb
assignment and equality operator

Can be used to define of what category a name
is; to assign a value to a name; to compare a
name to a value; or to check that something is
the case.

"Payer" is a person.

escrow.lex

The Filing Office may, if Default is declared, pay
the Digital Asset Collateral to the Secured Party.

statement.lex

Note that in the following example, License
means the (sub)contract itself and is checks the
state of the License, diverting into the clause
Factually Breached to find out if the License is
breached.

The Arbiter may, if this License is Factually
Breached:

evaluation.lex

ITSELF
reflexive pronoun
automatic reference

Refers to the subject of the sentence.

Functions like THEMSELF.

LEAST
adjective
time operator part

Only in conjunction with AT.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 32 1.0

"Factually Breached" is defined as: this License is
Commissioned and the Comment Text is not fixed,
or this License is Published and there is no
Permission to Comment and the Notice Time lies
at least 24 hours in the past.

evaluation.lex

LEX
noun
keyword

Keyword for the start of a digital contract.

LEX must be the first word of a digital contract.
The words after LEX are the name of the entire
digital contract (system) described thereafter.

As a convention, LEX is usually spelled in up-
percase.

LEX Escrow.

escrow.lex

LEXON
noun
keyword

The numbers following LEXON are the version
number of the Lexon compiler that the digital
contract was written for. This is a concept that
helps while Lexon is evolving. As a rule, newer
compilers can compile older version Lexon texts
but there will sometimes be 'breaking changes'
where this backward compatibility is not pro-
vided and older texts have to be adapted to the
changes of a new grammar.

Note that compatibility is not a dimension of
what the texts mean in human language, which
remains the same throughout Lexon versions,
because English does not change. Instead, this
is about older versions of the compiler under-
standing less than newer ones, i.e., the grammar
getting less restricted.

As a convention, LEXON is usually spelled in
uppercase.

LEXON: 0.2.12

statement.lex

LIES
verb
time comparison operator

Only in conjunction with AT LEAST.

"Factually Breached" is defined as: this License is
Commissioned and the Comment Text is not fixed,
or this License is Published and there is no
Permission to Comment and the Notice Time lies
at least 24 hours in the past.

evaluation.lex

MAY
auxilliary verb
permission marker

The subject to MAY is/are the only party or
parties to the contract that are auhtorized to
initiate the action described. The subject must
be bound, i.e., the name before MAY must have
been defined before, it cannot be defined in the
may statement. Note that statements without
may might likewise restrict authority to the
named subject. And it is possible that the sub-
ject is unbound in cases without MAY, i.e., the
role not defined at that point.

The Filing Office may certify the File Number.

statement.lex

MILLISECOND,
MILLISECONDS
noun
time constant of 1/1000 seconds.

Functions like DAYS.

MINUTE, MINUTES
noun
time constant of 60 seconds

Functions like DAYS.

MONTH, MONTHS
noun
Time constant of 2592000 seconds, i.e., 30
DAYS

Functions like DAYS.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 33 1.0

MYSELF
reflexive pronoun
automatic reference

Refers to the subject of the sentence.

Functions like THEMSELF.

NO
adverb
logic operator

Logical inversion. In conjunction with there is,
also used to test whether a name has been as-
sign any concrete meaning yet. See fixed.

"Factually Breached" is defined as: this License is
Commissioned and the Comment Text is not fixed,
or this License is Published and there is no
Permission to Comment and the Notice Time lies
at least 24 hours in the past.

evaluation.lex

NOT
adverb
logic operator

Logical inversion.

Used to form the opposite of a logical expres-
sion. Can be positioned before a name, or before
fixed. The resulting expression means the oppo-
site of what the part after not meant. It can be
part of a bigger logical expression, as shown be-
low. Not, as is grammatically correct, binds the
next noun or verb only. The requirements for
sentence structure make sure that no ambiguity
can arise for the human reader.

If a more complex expression must be inverted,
it has to be written as a clause. This simple de-
vice to avoid ambiguity without requiring literal
bracketing is borrowed from proven best prac-
tice in Functional Programming.

"Factually Breached" is defined as: this License is
Commissioned and the Comment Text is not fixed,
or this License is Published and there is no
Permission to Comment and the Notice Time lies
at least 24 hours in the past.

evaluation.lex

NOW
noun
time value

Synonym to CURRENT TIME.

The Filing Office may fix the Initial Statement
Date as now.

OF
preposition
no op

Only with REMAINDER.

The Arbiter may pay from escrow the Fee to
themselves, and afterwards pay the remainder of
the escrow to the Payee.

escrow.lex

OFF
adverb
operator part

Only with SIGNED.

ON
preposition
operator part

Only with SIGNED.

ONESELF
reflexive pronoun
automatic reference

Refers to the subject of the sentence.

Functions like THEMSELF.

OR
conjunction
logic operator

Used to build logical expressions. A phrase that
contains or is true if the part left or the part
right of the or are true.

Colons, commas and semicolons are relevant to
separate sub-phrases. Programmers note that

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 34 1.0

there is no precedence of and over or in Lexon
as this is not a part of natural language. Com-
mas and semicolons offer two levels of nesting.
Beyong this, precedence is created by encapsu-
lating logical expressions into separate clauses.

In the example ...

"Factually Breached" is defined as: this License is
Commissioned and the Comment Text is not fixed,
or this License is Published and there is no
Permission to Comment and the Notice Time lies
at least 24 hours in the past.

evaluation.lex

... all of the following counts as the left-side of
the or, because there is a comma before the or
and no comma to the left of it:

this License is Commissioned and the Comment
Text is not fixed

... and all of the following is the right side of the
or, because there is a comma before the or and
no comma to the right of it:

this License is Published and there is no
Permission to Comment and the Notice Time lies
at least 24 hours in the past.

OURSELVES
reflexive pronoun
automatic reference

Refers to the subject of the sentence.

Functions like THEMSELF.

PASSED
adjective
time comparison operator

Compares a point in time to the current time.

The Filing Office may, if the Continuation Window
Start has passed, send the Notification Statement
to the Secured Party.

statement.lex

For more on how to use time, see hours and
days.

PAST
noun or adjective
negative time sign

Past indicates that a measure of time is to be
subtracted from the current time, or it functions
like HAS PASSED.

In the example, in the past functions as a nega-
tive sign to the literal 24 hours, relative to now.

"Factually Breached" is defined as: this License is
Commissioned and the Comment Text is not fixed,
or this License is Published and there is no
Permission to Comment and the Notice Time lies
at least 24 hours in the past.

evaluation.lex

For more on how to use time, see hours and
days.

PAY, PAYS
verb
transfer operator

A transfer over the amount given immediately
following pay, from the subject of the sentence,
to the object marked with to or into.

The Payer pays an Amount into escrow, appoints
the Payee, appoints the Arbiter, and fixes the Fee.

escrow.lex

PER
preposition
keyword

PER marks the beginning of the TERMS of a
covenant or sub-contract.

Digital contracts are often really contract sys-
tems that control the creation of individual con-
tracts each with different counter parties. These
sub contracts are called covenants in the context
of digital contracts. Their terms are separated
from the general terms of the digital contracts –
which govern everything else, specifically how
the covenants come into existence – by the key-
word PER, followed by the name the of the cov-
enant, and optionally preceded by the keyword
TERMS.

As a convention, PER is usually spelled in up-
percase.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 35 1.0

TERMS PER License:

statement.lex

PERSON
noun
type

Defines a name to stand for a person.

"Payer" is a person.

escrow.lex

PREAMBLE
noun
keyword

Start of a comment from both legal and pro-
cessing point of view. Words after PREAMBLE
are explanations with minimal legal weight and
are not translated to 3rd generation language
code by the compiler. Accordingly, in the exam-
ple below, no word behind the colon is inter-
preted. This is not a special case: it is similar to
how Lexon does not account for the common
meaning of nouns in human language that a
writer defines. This meaning is helpful to under-
stand the contract, but not part of it, like the
preamble text. Likewise, it is a common pitfall
to read the preamble in a paper contract as part
of the legal agreement; it is not. Its value lies in
paraphrasing the more technical prose of the
agreement in more accessible but blurier terms
and to provide context.

As a convention, PREAMBLE is usually spelled
in uppercase.

PREAMBLE: This is a licensing contract for a
software evaluation.

evaluation.lex

PROVIDED
adjective
conditional keyword

Synonym to IF.

The Filing Office may, provided the Continuation
Window Start has passed, send the Notification
Statement to the Secured Party.

REGISTER, REGISTERS
verb
parameter assignment operator

Synonym to fix.

The Licensee may register a Comment Text.

evaluation.lex

REMAINDER
noun
no op

Optional part to internal token count variable
ESCROW.

The Arbiter may pay from escrow the Fee to
themselves, and afterwards pay the remainder of
the escrow to the Payee.

escrow.lex

RESPECTIVE
adjective
optional part of built-in time value

Only in conjunction with CURRENT TIME.

The Secured Party may certify the Termination
Statement Time as the respective current time.

RETURN, RETURNS
verb
transfer operator

Synonym to PAY.

The Arbiter may pay from escrow the Fee to
themselves, and afterwards return the remainder
of the escrow to the Payer.

escrow.lex

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 36 1.0

SECOND, SECONDS
noun
time constant of 1 second

Functions like DAYS.

SEND, SENDS
verb
transfer and messaging operator

Send a message. On the blockchain, this can be
an entry on the receipt log.

The Filing Office may, if the Continuation Window
Start has passed, send the Notification Statement
to the Secured Party.

statement.lex

SIGNED
adjective
logical true

Only in the combination SIGNED OFF, with
optional following ON.

In other words, signed, signed off, and signed off
on all mean the same.

The Agent may, once the Receipt is signed off,
return the Collateral to the Counterparty.

SO
adjective
causal concatenator part

Only in conjunction with IF.

IF SO is a synonym for AFTERWARDS. See
remarks on sentence order there.

The Arbiter may pay from escrow the Fee to
themselves, and if so return the remainder of the
escrow to the Payer.

TERMINATE,
TERMINATES
verb
destruction operator

The consequence of termination is that a con-
tract's state cannot be changed anymore. Both
main contracts and covenants (subcontracts)
can be terminated. It is good practice to end a
contract after its purpose is fulfilled so that it
cannot be partially restarted for unintended
consequences.

The Filing Office may, if the Termination Period
has passed, terminate this contract.

statement.lex

TERMS
noun
optional keyword

Optional marker of the beginning of general or
per-subcontract terms. The TERMS keyword
serves to increase clarity but can be left out as
the document order suffices for the compiler to
understand what part of a document to expect
next: terms are neccessarily all statements fol-
lowing the LEX keyword and digital contract
(system) name. For yet more clarity, TERMS
can be preceded by the optional keyword GEN-
ERAL.

For covenants (sub contracts), their terms must
be marked at least by the keyword PER, fol-
lowed by the covenant's name. TERMS may
precede PER but is optional.

As a convention, TERMS is usually spelled in
uppercase.

TERMS:

evaluation.lex

TERMS PER License:

statement.lex

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 37 1.0

TEXT
noun
type

Defines that a name is standing for a text.

"Notification Statement" is a text.

statement.lex

THAT
conjunction
conditional keyword

Following statements are executed only of the
immediately following condition is true.

Appears only together with GIVEN.

GIVEN THAT is a synonym to IF.

The Filing Office may, given that the Continuation
Window Start has passed, send the Notification
Statement to the Secured Party.

THE
article
no op

Articles are optional to increase readability, be-
cause the name they precede must always be
unambigous on its own.

The Payer pays an Amount into escrow, appoints
the Payee, appoints the Arbiter, and fixes the Fee.

escrow.lex

Cf. A.

THEMSELF,
THEMSELVES
reflexive pronoun
automatic reference

Refers to the subject of the sentence.

In this example, themselves means the Arbiter.

The Arbiter may pay from escrow the Fee to
themselves, and afterwards pay the remainder of
the escrow to the Payee.

escrow.lex

THEN
adverb, adjective
conditional keyword, causal conccatenator

If the Termination Period has passed, then
terminate this contract.

In conjunction with CURRENT TIME:

The Secured Party may file a Termination
Statement, and certify the Termination Statement
Time as the then current time.

statement.lex

Also functions like THEREFOR:

This License is then Paid.

THERE
adverb
existence test

Used to reason about the existence of some-
thing, ore more precisely, about whether a name
has a defined meaning or not.

Appears only in THERE IS or THERE IS NOT,
or with variations of IS, like BE.

Cf. fixed.

"Factually Breached" is defined as: this License is
Commissioned and the Comment Text is not fixed,
or this License is Published and there is no
Permission to Comment and the Notice Time lies
at least 24 hours in the past.

evaluation.lex

THEREFOR,
THEREFORE
adverb
causal concatenator

Therefore binds a sentence to the preceding
ones, so that it is performed only if all preceding
sentences were performed, i.e., did not disqual-
ify for access or conditional reasons.

Without THEREFORE, a sentence by itself is
always materialized when a clause is triggered.

Cf. afterwards.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 38 1.0

The Licensee pays the Licensing Fee to the
Licensor, and pays the Breach Fee into escrow.
This License is therefore Paid.

evaluation.lex

THESE
adjective
no op

These can be required to get the natural lan-
guage grammar right but does not change mean-
ing by its presence or absence because the name
that it precedes must always be unambiguous
by itself.

The Licensor may certify these Agreements as
Commissioned.

THIS
adjective
no op

THIS can be required to get the natural lan-
guage grammar right but does not change mean-
ing by its presence or absence because the name
that it precedes must always be unambiguous
by itself.

The Licensor may certify this License as
Commissioned.

evaluation.lex

TIME
noun
type

Either defines a name as standing for a time
value.

"Initial Statement Date" is a time.

statement.lex

Or, specificies the current point in time.

The Filing Office may fix the Initial Statement
Date as the current time.

statement.lex

TO
preposition
transfer operator part

Appears in conjunction with PAY, SEND, be or
equal.

The Arbiter may pay from escrow the Fee to
themselves, and afterwards pay the remainder of
the escrow to the Payee.

escrow.lex

The Filing Office may, if the Continuation Window
Start has passed, send the Notification Statement
to the Secured Party.

statement.lex

TRUE
adjective
logical true

A value that a name or an expression can have,
meaning that something is the case.

Synonymous with YES.

In the following example, the expression the
Continuation Window has passed can be TRUE
or FALSE.

The Filing Office may, if the Continuation Window
Start has passed, send the Notification Statement
to the Secured Party.

statement.lex

Cf. FIXED.

WAS
verb
logic equivalence operator

Functions like IS.

WEEK, WEEKS
noun
time factor constant

Time constant of 604,800 seconds, i.e., 7 DAYS.

Functions similar to DAYS.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 39 1.0

WITH
conjunction
causal concatenator

Only appears as AND WITH THIS.

Functions like THEREFORE.

YEAR, YEARS
noun
time factor constant

Time constant of 31,536,000 seconds, i.e., 365
DAYS.

Functions similar to DAYS.

YES
noun
logical true

A value that a name or an expression can have,
meaning that something is the case.

Synonymous with TRUE.

YOURSELF,
YOURSELVES
reflexive pronoun
automatic reference

Refers to the subject of the sentence.

Functions like THEMSELF.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 40 1.0

EXAMPLES

Lexon for Law
Lexon allows for law to be executed as a program. Asst. prof. Carla L. Reyes of SMU pioneers the use
of Lexon to write statute – shown below – in her seminal 2021 paper Creating Cryptolaw for the Uniform
Commercial Code.18 She created the following Lexon code as a proposal to the commission that is tasked
with the reform of the U.S. trade law, which she advises on blockchain topics. This code could become
model law, be adapted by states to be executed on the computers of their local agencies and protect
billions of dollars of collateral.

The salient point is that the law itself, without further changes is the program that the respective
office runs to implement the law. The productivity gains of Lexon could not be illustrated better.

The motivation for this proposal is a concrete shortfall of the existing statute. Asst. prof. Reyes writes
(emphasis added):

“Under certain conditions, security interests not only bind the creditor and debtor, but
also third-party creditors seeking to lend against the same collateral. To receive this extraor-
dinary benefit, creditors must put the world on notice, usually by filing a financing statement
with the state in which the debtor is located. Unfortunately, the Uniform Commercial Code
(U.C.C.) Article 9 filing system fails to provide actual notice to interested parties and intro-
duces risk of heavy financial losses. To solve this problem, this Article introduces a smart-
contract-based U.C.C.-1 form built using Lexon, an innovative new programming language
that enables the development of smart contracts in English. The proposed “Lexon U.C.C.
Financing Statement” does much more than merely replicate the financing statement in digital
form; it also performs several U.C.C. rules so that, for the first time, the filing system works
as intended. In demonstrating that such a system remains compatible with existing
law, the Lexon U.C.C. Financing Statement also reveals important lessons about the inter-
action of technology and commercial law.” ibid. 18

LEX UCC Financing Statement.

LEXON: 0.2.12

"Financing Statement" is this contract.
"File Number" is data.
"Initial Statement Date" is a time.
"Filer" is a person.
"Debtor" is a person.
"Secured Party" is a person.
"Filing Office" is a person.
"Collateral" is data.
"Digital Asset Collateral" is an amount.
"Reminder Fee" is an amount.
"Continuation Window Start" is a time.
"Continuation Statement Date" is a time.
"Continuation Statement Filing Number" is data.
"Lapse Date" is a time.
"Default" is a binary.
"Continuation Statement" is a binary.
"Termination Statement" is a binary.
"Termination Statement Time" is a time.
"Notification Statement" is a text.

The Filer fixes the Filing Office, fixes the Debtor, fixes the Secured Party, and fixes the Collateral.

18 Washington and Lee Law Review – https://papers. ssrn.com/sol3/papers.cfm?abstract_id=3809901

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 41 1.0

Clause: Certify.
The Filing Office may certify the File Number.

Clause: Set File Date.
The Filing Office may fix the Initial Statement Date as the current time.

Clause: Set Lapse.
The Filing Office may fix the Lapse Date.

Clause: Set Continuation Start.
The Filing Office may fix the Continuation Window Start.

Clause: Pay Fee.
The Secured Party may pay a Reminder Fee into escrow.

Clause: Notice.
The Filing Office may fix the Notification Statement.

Clause: Notify.
The Filing Office may, if the Continuation Window Start has passed, send the Notification Statement to
the Secured Party.

Clause: Pay Escrow In.
The Debtor may pay the Digital Asset Collateral into escrow.

Clause: Fail to Pay.
The Secured Party may declare Default.

Clause: Take Possession.
The Filing Office may, if Default is declared, pay the Digital Asset Collateral to the Secured Party.

Clause: File Continuation.
The Secured Party may file the Continuation Statement.

Clause: Set Continuation Lapse.
The Filing Office may, if the Continuation Statement is filed, fix the Continuation Statement Date.

Clause: File Termination.
The Secured Party may file a Termination Statement, and certify the Termination Statement Time as the
then current time.

Clause: Release Escrow.
The Filing Office may, if the Termination Statement is filed, return the Digital Asset Collateral to the
Debtor.

Clause: Release Reminder Fee.
The Filing Office may, if the Termination Statement is filed, return the Reminder Fee to the Secured
Party.

Clause: Termination Period.
"Termination Period" is defined as 365 days after the Termination Statement Time.

Clause: Terminate and Clear.
The Filing Office may, if the Termination Period has passed, terminate this contract.

Source 3 – Lexon code example: U.C.C. Filing Statement

Sophia Output
The above example is compiled to the following Sophia code, using the --harden option to make the
code safe against certain attacks. The produced code makes use specifically of Sophia’s highly precise

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 42 1.0

handling of undefined values, employing the option type, a hybrid of a normal atomic type and a value
meaning that no value is given, None. The Lexon text is again used verbatim for comments, exploiting
that Lexon code is per se self-documenting.

/* Lexon-generated Sophia code

 code: UCC Financing Statement

 file: statement.lex

 code tagged: 0.2.12

 compiler: lexon 0.3 alpha 85

 grammar: 0.2.20 / subset 0.3.8 alpha 79 - English / Reyes

 backend: sophia 0.3.1/85

 target: sophia 6+

 options: --sophia --harden
*/

@compiler >=6

include "Option.aes"
using Option

/** LEX UCC Financing Statement.
 *
 * LEXON: 0.2.12
 *
 * "Financing Statement" is this contract.
 * "File Number" is data.
 * "Initial Statement Date" is a time.
 * "Filer" is a person.
 * "Debtor" is a person.
 * "Secured Party" is a person.
 * "Filing Office" is a person.
 * "Collateral" is data.
 * "Digital Asset Collateral" is an amount.
 * "Reminder Fee" is an amount.
 * "Continuation Window Start" is a time.
 * "Continuation Statement Date" is a time.
 * "Continuation Statement Filing Number" is data.
 * "Lapse Date" is a time.
 * "Default" is a binary.
 * "Continuation Statement" is a binary.
 * "Termination Statement" is a binary.
 * "Termination Statement Time" is a time.
 * "Notification Statement" is a text.
 *
 * The Filer fixes the Filing Office, fixes the Debtor, fixes the Secured Party, and fixes the
Collateral.
**/

main contract UCCFinancingStatement =

 record state = {
 file_number : option(string),
 initial_statement_date : option(int),
 filer : option(address),
 debtor : option(address),
 secured_party : option(address),
 filing_office : option(address),
 collateral : option(string),
 digital_asset_collateral : option(int),
 reminder_fee : option(int),
 continuation_window_start : option(int),
 continuation_statement_date : option(int),
 continuation_statement_filing_number : option(string),
 lapse_date : option(int),
 _default : option(bool),
 continuation_statement : option(bool),
 termination_statement : option(bool),
 termination_statement_time : option(int),
 notification_statement : option(string),
 terminated : bool
 }

 datatype event = Message(indexed address, indexed address, string)

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 43 1.0

 entrypoint init(filing_office : address, debtor : address, secured_party : address,
collateral : string) = {
 file_number = None,
 initial_statement_date = None,
 filer = Some(Call.caller),
 debtor = Some(debtor),
 secured_party = Some(secured_party),
 filing_office = Some(filing_office),
 collateral = Some(collateral),
 digital_asset_collateral = None,
 reminder_fee = None,
 continuation_window_start = None,
 continuation_statement_date = None,
 continuation_statement_filing_number = None,
 lapse_date = None,
 _default = None,
 continuation_statement = None,
 termination_statement = None,
 termination_statement_time = None,
 notification_statement = None,
 terminated = false
 }

 stateful function termination() =
 put(state{terminated = true})

 function check_termination() =
 require(!state.terminated, "contract system terminated before")

 stateful function transfer(to : address, amount : int) =
 Chain.spend(to, amount)

 function send(to : address, message : string) =
 Chain.event(Message(Call.caller, to, message))

 function permit(authorized : option(address)) =
 require(Call.caller == force(authorized), "access")

 /*
 * Clause: Certify.
 * The Filing Office may certify the File Number.
 */

 stateful entrypoint certify(file_number : string) =
 check_termination()
 permit(state.filing_office)
 put(state{file_number = Some(file_number)})

 /*
 * Clause: Set File Date.
 * The Filing Office may fix the Initial Statement Date as the current time.
 */

 stateful entrypoint set_file_date() =
 check_termination()
 permit(state.filing_office)
 put(state{initial_statement_date = Some(Chain.timestamp)})

 /*
 * Clause: Set Lapse.
 * The Filing Office may fix the Lapse Date.
 */

 stateful entrypoint set_lapse(lapse_date : int) =
 check_termination()
 permit(state.filing_office)
 put(state{lapse_date = Some(lapse_date)})

 /*
 * Clause: Set Continuation Start.
 * The Filing Office may fix the Continuation Window Start.
 */

 stateful entrypoint set_continuation_start(continuation_window_start : int) =
 check_termination()
 permit(state.filing_office)
 put(state{continuation_window_start = Some(continuation_window_start)})

 /*
 * Clause: Pay Fee.
 * The Secured Party may pay a Reminder Fee into escrow.
 */

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 44 1.0

 stateful payable entrypoint pay_fee() =
 check_termination()
 permit(state.secured_party)
 switch(state.reminder_fee)
 None => put(state{reminder_fee = Some(Call.value)})
 Some(_) => put(state{reminder_fee = Some(force(state.reminder_fee) + Call.value)})

 /*
 * Clause: Notice.
 * The Filing Office may fix the Notification Statement.
 */

 stateful entrypoint notice(notification_statement : string) =
 check_termination()
 permit(state.filing_office)
 put(state{notification_statement = Some(notification_statement)})

 /*
 * Clause: Notify.
 * The Filing Office may, if the Continuation Window Start has passed, send the
Notification Statement to the Secured Party.
 */

 entrypoint notify() =
 check_termination()
 permit(state.filing_office)
 if(state.continuation_window_start =< Some(Chain.timestamp))
 send(force(state.secured_party), state.notification_statementx)

 /*
 * Clause: Pay Escrow In.
 * The Debtor may pay the Digital Asset Collateral into escrow.
 */

 stateful payable entrypoint pay_escrow_in() =
 check_termination()
 permit(state.debtor)
 switch(state.digital_asset_collateral)
 None => put(state{digital_asset_collateral = Some(Call.value)})
 Some(_) => put(state{digital_asset_collateral =
Some(force(state.digital_asset_collateral) + Call.value)})

 /*
 * Clause: Fail to Pay.
 * The Secured Party may declare Default.
 */

 stateful entrypoint fail_to_pay() =
 check_termination()
 permit(state.secured_party)
 put(state{_default = true})

 /*
 * Clause: Take Possession.
 * The Filing Office may, if Default is declared, pay the Digital Asset Collateral to the
Secured Party.
 */

 stateful entrypoint take_possession() =
 check_termination()
 permit(state.filing_office)
 if(state._default != None)
 transfer(force(state.secured_party), state.digital_asset_collateral)

 /*
 * Clause: File Continuation.
 * The Secured Party may file the Continuation Statement.
 */

 stateful entrypoint file_continuation(continuation_statement : bool) =
 check_termination()
 permit(state.secured_party)
 put(state{continuation_statement = Some(continuation_statement)})

 /*
 * Clause: Set Continuation Lapse.
 * The Filing Office may, if the Continuation Statement is filed, fix the Continuation
Statement Date.
 */

 stateful entrypoint set_continuation_lapse(continuation_statement_date : int) =
 check_termination()
 permit(state.filing_office)

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 45 1.0

 if(state.continuation_statement != None)
 put(state{continuation_statement_date = Some(continuation_statement_date)})

 /*
 * Clause: File Termination.
 * The Secured Party may file a Termination Statement, and certify the Termination
Statement Time as the then current time.
 */

 stateful entrypoint file_termination(termination_statement : bool) =
 check_termination()
 permit(state.secured_party)
 put(state{termination_statement = Some(termination_statement)})
 put(state{termination_statement_time = Some(Chain.timestamp)})

 /*
 * Clause: Release Escrow.
 * The Filing Office may, if the Termination Statement is filed, return the Digital Asset
Collateral to the Debtor.
 */

 stateful entrypoint release_escrow() =
 check_termination()
 permit(state.filing_office)
 if(state.termination_statement != None)
 transfer(force(state.debtor), state.digital_asset_collateral)

 /*
 * Clause: Release Reminder Fee.
 * The Filing Office may, if the Termination Statement is filed, return the Reminder Fee to
the Secured Party.
 */

 stateful entrypoint release_reminder_fee() =
 check_termination()
 permit(state.filing_office)
 if(state.termination_statement != None)
 transfer(force(state.secured_party), state.reminder_fee)

 /*
 * Clause: Termination Period.
 * "Termination Period" is defined as 365 days after the Termination Statement Time.
 */

 entrypoint termination_period() =
 Some(state.termination_statement_time + (365 * 86400))

 /*
 * Clause: Terminate and Clear.
 * The Filing Office may, if the Termination Period has passed, terminate this contract.
 */

 stateful entrypoint terminate_and_clear() =
 check_termination()
 permit(state.filing_office)
 if(termination_period() =< Some(Chain.timestamp))
 termination()

Source 4 – Lexon compilation example (hardened): U.C.C. Filing Statement

License Evaluation Contract
This digital contract was created by F. Idelberger, Phd candidate at the European University Institute
in Florence. It appears in Merging traditional contracts (or law) and (smart) e-contracts – a novel
approach, comparing this text to smart contracts written in other languages.

Idelbergers paper about the contract is available at xxx.

LEX: Evaluation License System.

LEXON: 0.2.1

AUTHORS: FLORIAN IDELBERGER, HENNING DIEDRICH

PREAMBLE: This is a licensing contract for a software evaluation.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 46 1.0

TERMS:

"Licensor" is a person.
"Arbiter" is a person.
"Licensing Fee" is an amount.
"Breach Fee" is an amount.

The Licensor appoints the Arbiter,
fixes the Licensing Fee,
and fixes the Breach Fee.

TERMS PER License:

"Description of Goods" is a text.
"Licensee" is a person.
"Paid" is a binary.
"Commissioned" is a binary.
"Comment Text" is a text.
"Published" is a binary.
"Permission to Comment" is a binary.
"Notice Time" is a time.
"License" is this contract.

The Licensor appoints the Licensee, and fixes the Description of Goods.

CLAUSE: Pay.
The Licensee pays the Licensing Fee to the Licensor,
and pays the Breach Fee into escrow.
This License is therefore Paid.

CLAUSE: Commission.
The Licensor may certify this License as Commissioned.

CLAUSE: Comment.
The Licensee may register a Comment Text.

CLAUSE: Publication.
The Licensee may certify this License as Published.

CLAUSE: Grant Permission to Comment.
The Licensee may grant the Permission to Comment.

CLAUSE: Declare Breach.
The Arbiter may, if this License is Factually Breached:
pay the Breach Fee to the Licensor,
and afterwards terminate this License.

CLAUSE: Factually Breached.
"Factually Breached" is defined as:
this License is Commissioned and the Comment Text is not fixed,
or this License is Published and there is no Permission to Comment and the Notice Time lies at least 24 hours in the
past.

CLAUSE: Notice.
The Licensor or the Arbiter may fix the Notice Time as the respective current time.

CLAUSE: Noticed.
"Noticed" is defined as a Notice Time being fixed.

Source 5 – License Evaluation

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 47 1.0

COMPILER
The Lexon compiler19, 20 accepts text adhering to the controlled grammar described above and trans-
poses this natural-language code to the functional 3rd generation blockchain programming language
Sophia. Lexon Æternity Tokens21 provide metered access to the online Lexon compiler.

OPERATION

Figure 1 – Compiler screen at lexon.org/compiler

The online compiler is operated as follows:

a. text paste Lexon text into a.
b. compile click compile button b.
c. result the resulting Sophia code is shown in c.
d. options to execute special functions, discussed below,22 check boxes in list d.

19 A compiler is basically a program that helps create other programs. It processes human-written files to create output

that can be executed by a computer.
20 Online at http://lexon.org/compiler
21 See Token, from pg. 22.
22 See Options, pg. 19.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 48 1.0

EXAMPLE

For example, the Lexon text given in Source 1, pg. 6, could be pasted into field a. Checking barebones in
d., then clicking b., the Lexon compiler would translate the Lexon text in a. into this Sophia code and
show it in c.:

LEX Escrow.

"Payer" is a person.
"Payee" is a person.
"Arbiter" is a person.
"Fee" is an amount.

The Payer pays an Amount into escrow, appoints the Payee, appoints the Arbiter, and also fixes the Fee.

CLAUSE: Pay Out.
The Arbiter may pay from escrow the Fee to themselves, and afterwards pay the remainder of the escrow
to the Payee.

CLAUSE: Pay Back.
The Arbiter may pay from escrow the Fee to themselves, and afterwards return the remainder of the
escrow to the Payer.

Source 6 – Lexon code example

Using the barebones option, the Lexon compiler translates the above Lexon code into this Sophia:

@compiler >=6

main contract Escrow =

 record state = {
 payer : address,
 payee : address,
 arbiter : address,
 amount : int,
 fee : int
 }

 entrypoint init(payee : address, arbiter : address, fee : int) = {
 payer = Call.caller,
 payee = payee,
 arbiter = arbiter,
 amount = Call.value,
 fee = fee
 }

 stateful function transfer(to : address, amount : int) =
 Chain.spend(to, amount)

 function permit(authorized : address) =
 require(Call.caller == authorized,
 "no access")

 stateful entrypoint pay_out() =
 permit(state.arbiter)
 transfer(state.arbiter, state.fee)
 transfer(state.payee, Contract.balance)

 stateful entrypoint pay_back() =
 permit(state.arbiter)
 transfer(state.arbiter, state.fee)
 transfer(state.payer, Contract.balance)

Source 7 – Sophia result (barebones)

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 49 1.0

Using the all auxiliaries option, the Lexon compiler translates the Lexon code from the previous page
into the following Sophia program. Its core functionality is identical to the barebones version, but it has
additional features and comments.

@compiler >=6

include "Option.aes"

/* Lexon-generated Sophia code

 code: Escrow
 file: escrow.lex
 compiler: lexon 0.3 alpha 85
 grammar: 0.2.20 / subset 0.3.8 alpha 79 - English / Reyes
 backend: sophia 0.3.1/85
 target: sophia 7+
 parameters: --sophia --all-auxiliaries
*/

/** LEX Escrow.
 *
 * "Payer" is a person.
 * "Payee" is a person.
 * "Arbiter" is a person.
 * "Amount" is an amount.
 * "Fee" is an amount.
 *
 * The Payer pays an Amount into escrow, appoints the Payee,
 * appoints the Arbiter, and fixes the Fee.
**/

main contract Escrow =

 record state = {
 payer : address,
 payee : address,
 arbiter : address,
 amount : int,
 fee : int }

 entrypoint init(payee : address, arbiter : address, fee : int) =
 payer = Call.caller,
 payee = payee,
 arbiter = arbiter,
 amount = Call.value,
 fee = fee }

 /* token transfer */
 stateful function transfer(to : address, amount : int) =
 Chain.spend(to, amount)

 /* built-in require function */
 function permit(authorized : address) =
 require(Call.caller == authorized, "no access")

 /*
 * CLAUSE: Pay Out.
 * The Arbiter may pay from escrow the Fee to themselves,
 * and afterwards pay the remainder of the escrow to the Payee.
 */

 stateful entrypoint pay_out() =
 permit(state.arbiter)
 transfer(state.arbiter, state.fee)
 transfer(state.payee, Contract.balance)

 /*
 * CLAUSE: Pay Back.
 * The Arbiter may pay from escrow the Fee to themselves,
 * and afterwards return the remainder of the escrow to the Payer.
 */

 stateful entrypoint pay_back() =
 permit(state.arbiter)
 transfer(state.arbiter, state.fee)
 transfer(state.payer, Contract.balance)

Source 8 – Lexon compilation example (all auxiliaries)

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 50 1.0

The options d. controlling the output in c. are described below.22

The above code can be deployed to the Æternity blockchain. It is optimized for demonstration
purposes: it is short, not cluttered with comments, handling of fringe cases, nor extras like logging to
the chain receipt log. For a more production-ready compiler output from the same plain-text input, see
appendix Hardened Example, pg. 67. It adds all the elements that barebones tells the compiler to leave
out.

OPTIONS

Settings for the compilation process are made in the compiler screen at https://lexon.org/compiler (see
Figure 1, pg. 47) by ticking boxes in screen area d. Not all options are interesting for everyone. Those
more relevant to beginners are marked with an asterisk.*

Results shown in screen area c. (ibid.) will vary: some settings in d. cause information to be dis-
played in c., instead of code. In some instances the contents of field a. will be ignored when button b.
is clicked: e.g., when checking version in d., the version number of the compiler is displayed in c., no
matter the contents of field a. When checking the option names, the list of all symbols (defined nouns)
that are found in the Lexon code given in a. is listed in c. For some combinations of options, the output
in c. will be a mix of code and other information.

Developing Lexon Code
The following options can be helpful when writing Lexon texts. The online compiler serves as a conven-
ient sounding board to find one’s syntax errors and to explore what document structure will make sense
for a task at hand.

version*
Display the compiler version information in c.

verbose*
Trace detailed compilation steps in c., to find errors in the Lexon text given in a.

echo-source
List the Lexon source code that will be processed in c., but not the compilation result, to double check
what input arrives at the compiler.

precompile
Show sanitized – pre-compiled – source code in c. and no compilation result. This shows the library23
texts included in the source code, and the line numbering that error messages refer to. It also allows
verification that definition and clause names are recognized as intended.

echo-precompile
Show precompiled Lexon source code in c. and also the compilation result.

names*
List all names found in the Lexon code in c.

* option more likely of interest for beginners.
23 Libraries contain text written to be used and re-used in multiple projects. It is inserted into the main text.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 51 1.0

barebones*
The generated code is a simplistic ‘happy path’ for demonstration purposes. It does not have comments
and does not catch errors or edge cases. This is a starting point to verify semantics and basic flow. It is
an interesting learning device that visually surfaces the relationship between the Lexon text and the
resulting Sophia.

comments*
The generated code embeds the Lexon text and generic comments to help the auditing of it.

instructions*
The generated code has detailed instructions for use in its lead-in comments section. They reflect the
specific Lexon code at hand, listing all relevant core functions and their parameters.

harden
The generated code checks for unset arguments and variables. This impacts readability of the output
but is essential to catch user errors.

log
Write events to the global Aeternity receipts log.

all auxiliaries
The generated code features the options: comments, instructions, harden and log.

Interfacing
This option produces the information needed for front-end generation for Lexon code:

ui-info
Shows a JSON object encoding insights about the source code in area c.

Developing Lexon Grammars
The following options support the development of new Lexon grammars, for different natural languages
other than English.24

keywords
List in c. the keywords – the vocabulary – understood from an LGF25 grammar provided in a.

bnf
Produce BNF ibid. 38 from an LGF grammar provided in a. This is useful to verify that optional terms in
the LGF grammar spell out the intended individual BNF rules. The BNF is GNU Bison-compatible, which
can help to create new targets, i.e., output in additional 3rd generation programming languages.

24 See http://lexon.org on creating new grammars.
25 See Lexon Grammar Form, pg. 64Error! Bookmark not defined..

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 52 1.0

INTERNAL MODEL

This is a part of the abstract syntax tree (AST), the internal model the compiler creates when processing
the grammar and text discussed in chapter Grammar, pg. 64. It reflects natural language grammar
rather than programming logic. Such a tree can be created from any Lexon text using the flat tree
options.

 ↳ statements
 ↳ statement
 ↳ action
 ↳ subject
 ⎸ ↳ symbols
 ⎸ ↳ symbol «payer»
 ⎸ ↳ article
 ↳ predicates
 ↳ predicate
 ⎸ ↳ payment
 ⎸ ↳ pay
 ⎸ ⎸
 ⎸ ↳ expression
 ⎸ ⎸ ↳ combination
 ⎸ ⎸ ↳ combinor
 ⎸ ⎸ ↳ combinand
 ⎸ ⎸ ↳ symbol «amount»
 ⎸ ⎸ ↳ article
 ⎸ ⎸
 ⎸ ↳ preposition
 ⎸ ⎸
 ⎸ ↳ object
 ⎸
 ↳ predicate
 ⎸ ↳ appointment
 ⎸ ↳ appoint
 ⎸ ⎸
 ⎸ ↳ symbol «payee»
 ⎸ ↳ article
 ⎸
 ↳ predicate
 ⎸ ↳ appointment
 ⎸ ↳ appoint
 ⎸ ⎸
 ⎸ ↳ symbol «arbiter»
 ⎸ ↳ article
 ↳ predicate
 ↳ fixture
 ↳ fix
 ↳ symbol «fee»
 ↳ article

Figure 2 – Example of a Lexon abstract syntax tree

To create such a tree for your own Lexon text, at https://lexon.org/sophia paste it into a. (see Figure
1, pg. 47), check options flat and tree in d., click the compile button b. for the tree to appear in c.

There are fine-grained options for highlighting specific elements of the tree: color, highlight etc.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 53 1.0

TOKEN

The Lexon Æternity Token, LÆX, provides access to the Lexon online compiler.
The token functions as prepaid voucher. It buys one translation of a Lexon text of arbitrary length into
the Æternity blockchain language Sophia.26

The token is AEX-9-compatible27 and easily accessible through AEX-9-compatible wallets like Air-
Gap.28

The token can be purchased for Æ at https://lexon.org.

Tokens can immediately be used with the compiler but transferred out only after 30 days; except when
the first transfer in came from an unlocked account.

Transacting
Tokens can be transferred using AEX-9-compatible Æternity wallets. Other specific token mechanisms –
e.g., AEX-9 approval – can move tokens, even if in cold storage.

Price
The price for Lexon Æternity Tokens increases with the amount of tokens issued.29 This serves as load
protection for the online compiler.

Current Price
The current price, in Æ, can be learned at http://lexon.org/sophia. The page lists the price for the next
token sold and allows the querying of the total price for a planned purchase, e.g., how many tokens one
would receive for 100 Æ.

For an individual purchase, ten price points are established to calculate the total price. This effects a
rebate, the steeper the higher the amount purchased. It will therefore at any point be more economic to
buy in one transaction, instead of spreading a purchase across multiple transactions.

26 See Sophia, pg. 6.
27 AEX-9 is Æternity’s fungible token standard.
28 AirGap wallet – https://airgap.it/
29 Drops and locked-in sales can be exempted.

29

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 54 1.0

TUTORIAL
This tutorial steps through the process of creating a smart contract from
a Lexon digital contract and using it on the blockchain.

We use the Escrow example shown earlier.

The tutorial goes slow, the steps covered are essentially:

• compiling a Lexon text in the Lexon compiler
• pasting it into Æ Studio to deploy it
• using Æ Studio to interact with the contract

The tutorial has three chapters

• Compilation – processing the Lexon text
• Deployment – making a smart contract on the blockchain from it
• Use – interact with the contract, roleplaying different parties to it

Each step is illustrated with before and after screenshots showing what to do and what to expect.

PREREQUISITES

Wallet
To test sending real tokens through the contract, you need a wallet installed.

We use Æternity’s Superhero wallet. Install it from https://superhero.com.

Æ Tokens
The example contract deals in Æ tokens, the native tokens of the Æternity blockchain.

To have the full experience, purchase Æ from Simplex, see https://simplex.superhero.com/.

LÆX Tokens
When you are new to Lexon you get 10 test compilations free.

We assume that this is where you are at. Otherwise, you will want to purchase LÆX to pay for compiler
runs and extras.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 55 1.0

COMPILATION

The following is a detailed step-through of how to compile a Lexon Text
to Sophia code.

❶	
Paste the Lexon text into the top text field of the online compiler at http://lexon.org/compiler.

Escrow.

“Payer” is a person.
“Receiver” is a person.
“Notary” is a person.
“Amount” is an amount.
“Fee” is an amount.

The Payer pays an Amount into escrow, appoints the Receiver, appoints the Notary, and fixes the Fee.

CLAUSE: Pay Out.
The Notary may pay from escrow the Fee to themselves, and afterwards pay the remainder of the escrow
to the Receiver.

CLAUSE: Pay Back.
The Notary may pay from escrow the Fee to themselves, and afterwards return the
remainder of the escrow to the Payer.

Source 9 – A Lexon digital contract example: Escrow.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 56 1.0

Screen 1 – Lexon Online Compiler

❷	
Check option barebones on the right.

❸	
Click the compile button.

You will get this Sophia output:

main contract Escrow =

 record state = {
 payer : option(address),
 payee : option(address),
 arbiter : option(address),
 amount : option(int),
 fee : option(int)
 }

 entrypoint init(payee : address, arbiter : address, fee : int) = {
 payer = Some(Call.caller),
 payee = Some(payee),
 arbiter = Some(arbiter),
 amount = Some(Call.value),
 fee = Some(fee)
 }

 stateful function transfer(to : address, amount : int) =
 Chain.spend(to, amount)

 function permit(authorized : option(address), name : string) =

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 57 1.0

 require(Call.caller == force(authorized, name),
 StringInternal.concat("no access for ", name))

 function force(o : option('a), name : string) : 'a =
 switch(o)
 None => abort(StringInternal.concat(name, " not fixed"))
 Some(a) => a

 stateful entrypoint pay_out() =
 permit(state.arbiter, "Arbiter")
 transfer(force(state.arbiter, "Arbiter"), force(state.fee, "Fee"))
 transfer(force(state.payee, "Payee"), Contract.balance)

 stateful entrypoint pay_back() =
 permit(state.arbiter, "Arbiter")
 transfer(force(state.arbiter, "Arbiter"), force(state.fee, "Fee"))
 transfer(force(state.payer, "Payer"), Contract.balance)

Source 10 – Escrow: Sophia source

DEPLOYMENT

The following is a detailed step-through of how to deploy the compiled
smart contract to the Æternity blockchain.

❹	
Copy the resulting Sophia code.

❺	
In your browser, open Æ Studio at http://studio.aepps.com.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 58 1.0

Screen 2 – Æ Studio

❻	
If you see this hint, top right-hand side, you need to install the Superhero wallet in your browser.

Screen 3 – Wallet installation hint.

Find guidance on installation at https://wallet.superhero.com

❼	
Connect your Superhero wallet by clicking on BROWSER WALLET in the middle of the right top sec-

tion.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 59 1.0

Screen 4 – Wallet Connection

This screen will pop up for connecting:

Screen 5 – Superhero Connection

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 60 1.0

After connecting, you see your account address and balance in the top right section.

Screen 6 – Wallet connected.

To reconnect with a different wallet account, reload the screen and click BROWSER WALLET again.

❽	
Create a new tab –	by	clicking the “+” tab – in

Select all of the new CryptoHamster code that appears and replace it with the Sophia source (pg. 57).

The source code will assume Sophia color coding and the tab will change its name to Escrow.

Screen 7 – Escrow translation in Æ Studio

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 61 1.0

❾	
Create new addresses in superhero and fill the forms like below.

❿	
Click Deploy and interact with the contract using the forms and buttons that appear.

A new menu item will appear at the bottom right:

⓫	
Click this menu open and interact with the contract using the buttons.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 62 1.0

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 63 1.0

APPLICATION
Lexon can be used to write law.

An official proposal for U.C.C. model law ibid. 41 has been presented to the reform committee appointed
by the American Law Institute. Eventually, Lexon will be the language that the real Robotic Laws30
will be articulated in, to embed reliable and unambiguous limitations into autonomous machines. This
will be plain-text code, written by elected lawmakers, approved in the democratic process.

Lexon even works purely as a language, entirely ‘off-machine.’ Because of its readability and
unambiguity, lawyers call it a new form of legalese. With the Lexon compiler as a sui generis test
tool.
Lexon allows for the articulation of unambiguous prose31 and the deterministic computation of logical
results from it. Its grammar overlays natural language and higher order logic, in the way that
Wittgenstein32 demanded. For artificial domains – like law, finance, programming, or entertainment –
this contributes to the quest for unambiguous, universal languages for philosophy and pure thought as
envisioned by Leibniz, Wilkins, Frege, Russel, or Carnap.

Lexon achieves its result differently than was long supposed to be the way.33 It arguably developed
in a blind spot caused by the focus on the meaning of words that emanated from analytical philosophy
and informed – and maybe hampered – the development of early, general artificial intelligence.34 Instead
of trying to define words out of context, all we might ever (need to) know is the context, or as the later
Wittgenstein proposed:

“the meaning of a word may be defined by how the word can be used as an element of
language.” ibid. 32
Lexon focuses on the use – and fundamentally abandons the notion that meaning is vested in

nouns. In so far as this is a structuralist argument, it shifts the context from the language to the four
corners of an agreement.35

The result is that in Lexon texts, nouns tend to be interchangeable, and meaning is transported
instead by the relationship between the nouns that the text describes. What matters is that the same
name, or noun, is used consistently to refer to the same entity throughout one digital contract. A noun’s
common meaning can contribute to readability – but not to the specific meaning of the document. This
may be surprising only because it does not conform to a naïve take on linguistics. But dropping the
inherent meaning of nouns is not unusual:

Lexon shares this feature with mathematical formulas and any programming language where vari-
able names are interchangeable; it is in keeping with how in business contracts, nouns are promoted to
proper names to increase clarity: uncoupling from the inert meaning of words, and instead putting them
into the service of the context, as neutral markers. Preferably, meaningful markers, but to be ignored
by a judge when discerning the meaning of a contract.

30 See xxx
31 The above example is really a template: The concrete contract will have digital or descriptive identifiers inserted for the

parties.
32 L. Wittgenstein, 1953, Philosophical Investigations. Asst. prof. Andrea Leiter first noted the connection.
33 Cf. Wilkins 1668 proposal for a better way to write words – https://archive.org/details/AnEssayTowardsARealCharac-

terAndAPhilosophicalLanguage and https://www.youtube.com/watch?v=TjdbrLxc3Ck
34 See https://lexon.org for the forthcoming paper on Lexon Intelligent Agents that elaborates on Lexon’s role as a tool

for general artificial intelligence.
35 To make it concrete is a philosophical demand, too. Cf. W. James ‘vicious abstractionism’ in The Meaning of Truth,

1909, pg. 135.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 64 1.0

To exaggerate, the one word Lexon actually36 understands is transfer. Which is unsurprising as this
is the only act computers can perform: to transfer bits from one register to another. This verb anchors
Lexon texts; everything else is qualifiers. Again unsurprisingly, this design covers many types of agree-
ments, as the transfer of something is the common topic of contracts.

An elemental contribution of the Lexon approach is how it maps natural language to compiler
building tools – intuitively convincing, and in line, too, with what the tools were designed for37 – yet
different from what computer sciences had gotten used to in the chase for ever faster compile times.
Only a simple extension to an established meta-language (BNF38) was required to better describe natural
language grammar, for Lexon to stand upon the shoulders of the giants who paved the way.

Because Lexon solves a long-standing question of Computational Law, it works for blockchain smart
contracts, as well as off-line – and even off-machine. Transcending computers, it may39 over time replace
today's legalese as a more useful, less ambiguous, and more readable language of law and contracting.
The work of professors of law and computer sciences regarding Lexon40, 41 may serve as inspiration in
imagining the progress that could be possible; also for a two-thousand-year-old industry that is doing
just fine.

But Lexon’s home game are digital contracts for everyone, i.e., simple blockchain smart contracts
that are legally enforceable agreements. They reach beyond Computational Law and add the unique
feature of unbreakability to contracting, which in due time will have tremendous economic impact across
all walks of life.

36 Lexon’s vocabulary is out of the scope of this paper. A playful interactive device to inspect it can be found at

https://lexon.org/vocabulary.hml. Also see the forthcoming 2nd edition of the Lexon Bible, Amazon.
37 Lexon uses Generalized Left-to-right Rightmost parsing (GLR), first implemented in 1984 by Masaru Tomita for natural

languages in LR Parsers for natural languages. GLR was first proposed for extensible languages by Bernard Lang in his
1974 paper Deterministic techniques for efficient non-deterministic parsers.

38 Bachus-Naur form (BNF) is a metasyntax notation to describe the grammar of computer languages, first used to
describe the grammar of ALGOL in 1960.

39 An expectation articulated by law scholars.
40 Prof. Christopher C. Clack, 2021, Languages for Smart and Computable Contracts – https://arxiv.org/ ftp/arxiv/pa-

pers/2104/2104.03764.pdf
41 Asst. prof. Carla L. Reyes, 2021, Creating Cryptolaw for the Uniform Commercial Code – https://papers.

ssrn.com/sol3/papers.cfm?abstract_id=3809901

Æ

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 65 1.0

CONCLUSION
 Lexon has been called the “Holy Grail of Computational Law” and the co-inventor of the AI

language Prolog, Robert Kowalski, named Lexon among the “next biggest changes.” 42
Lexon addresses a burning platform issue considered an almost hopeless cause: to lower the cost

of access to justice, to the level needed to heal our societies. It will de-weaponize law and level
the playing field in business, protecting creativity and merit against the deep pockets of incumbents.
Because Lexon is up to a million times cheaper, and a billion times faster,43 the difference it makes is a
qualitative one. Over time, it will fundamentally change how business, law and politics work.

Being ‘human-readable,’ Lexon is a catalyst for trustless technology. Its digital contracts are
at the same time legally enforceable agreements and unbreakable blockchain smart contracts. This solves
the question whether code is law.44 It makes contract programs – like those on blockchains – admissible
in court and will close the digital divide between the legal profession and the numerous black box
automations that ‘administer justice’ today.

Lexon’s far-reaching consequence is a merging of the legal and the IT space into a perplexing new
reality that may appear unexpected but has been envisioned, and worked towards, from the beginning
of the computer sciences.45 Its transparency and ease will unleash enormous power for good, pulling law
back to a semblance of equal justice – a notion as urgently necessary as it sounds naïve – and drive the
overdue digital reform of democratic governance, strengthening participation and representation in the
way that many intuit should be possible with present-day means. For fairer global commerce, Lexon will
help to provide new rails that are safe, low-cost and transparent for every participant – in the course of
which, stopping the descent of programming into a gatekeeping, dark art of the powerful.

The key to creating Lexon programs is the Lexon compiler. It can be used online without
installation at http://lexon.org/contracts.

Payment for its use is made with the Lexon Æternity Tokens. The tokens can be purchased at
http://lexon.org/tokens.
	

42Prof. Robert Kowalski, 2021, FutureLaw, Stanford –

Together with Blawx and Kowalski’s Logical English: https://law.stanford.edu/press/new-codex-prize-awarded-to-
computational-law-pioneers-during-9th-annual-codex-futurelaw-conference/ – regarding the differences between Lexon
and Logical English, see http://lexon.org#logical-english

43 See the Lexon book, ibid.
44 See L. Lessig, 2000, Code is Law – https://www.harvardmagazine.com/2000/01/code-is-law-html
45 Leibniz’ first idea of what should be programmed – in 1666 – was a thousand years old, Roman contract law.

APPENDIX
LEXON GRAMMAR FORM

Lexon grammars are defined in Lexon Grammar Form (LGF),46 which is similar to Backus-Naur Form
(BNF),ibid. 38 enhancing readability to better capture the complexity and redundancy of natural language.
For example, LGF’s square brackets resolve optional elements as expected:

sentence:

 subject [condition [","] [":"]] predicates separator

Source 11 – Lexon Grammar Form (LGF) example

The above rule is equivalent to:47

sentence:

 subject predicates separator
 or subject condition predicates separator
 or subject condition "," predicates separator
 or subject condition ":" predicates separator
 or subject condition "," ":" predicates separator

Sentence Structure
Lexon’s grammar realizes the English natural language sentence structure of subject, predicate, object.
That Lexon’s internal model reflects this pattern of natural language sets it apart from other program-
ming languages. Note how the object is included in the predicate:

sentence: subject [condition [","] [":"]]
predicates separator

predicates: predicates "," ["and" ["also"]] predicate
 or predicate

predicate: payment

…

payment: pay expression preposition object

pay: "pay" or "pays"

preposition: "to" or "into"

46 For more information on LGF see https://lexon.org.
47 Note the last rule that would not be correct English punctuation but is not ambiguous either.

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 67 1.0

Source 12 – Lexon sentence grammar (detail)

The above rules are employed to parse a sentence like this recital:

The Payer pays an Amount into escrow, appoints the Payee, appoints the Arbiter, and fixes the Fee.

Source 13 – Lexon code example sentence

HARDENED EXAMPLE

xxx

ROBOTIC LAWS

xxx

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 68 1.0

INDICES

INDEX OF FIGURES

Figure 1 – Compiler screen at lexon.org/compiler .. 47
Figure 2 – Example of a Lexon abstract syntax tree .. 52

INDEX OF SOURCES

Source 1 – A Lexon digital contract example: Escrow. ... 6
Source 2 – Lexon document structure .. 14
Source 3 – Lexon code example: U.C.C. Filing Statement ... 41
Source 4 – Lexon compilation example (hardened): U.C.C. Filing Statement 45
Source 5 – License Evaluation .. 46
Source 6 – Lexon code example .. 48
Source 7 – Sophia result (barebones) .. 48
Source 8 – Lexon compilation example (all auxiliaries) .. 49
Source 9 – A Lexon digital contract example: Escrow. ... 55
Source 10 – Escrow: Sophia source ... 57
Source 11 – Lexon Grammar Form (LGF) example ... 66
Source 12 – Lexon sentence grammar (detail) .. 67
Source 13 – Lexon code example sentence .. 67

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 69 1.0

WORD LIST

The entries are based on the grammar version 0.2.20 / subset 0.3.8 alpha 79 - English / Reyes.

For an interactive version of this word list, visit http://lexon.org/vocabulary.

A, AN 24
AFTER 24
AFTERWARDS 24
ALL 24
ALSO 24
AMOUNT 24
AND 24
ANNOUNCED 25
APPOINT, APPOINTS . 25
AS 25
AT 25
AUTHOR, AUTHORS ... 25
BE 25
BEEN 26
BEING 26
BINARY 26
CERTIFIED 26
CERTIFIES, CERTIFY .. 26
CLAUSE 26
COMMENT, COMMENTS
 27
CONTRACT,
CONTRACTS 27
CURRENT 27
DATA 27
DAY, DAYS 28
DECLARE, DECLARES 28
DECLARED 28
DEFINED 28
EQUAL 28
EQUALING 28
ESCROW 29
FILED 29
FILE, FILES 29
FIX, FIXES 29
FIXED 30

FOR 30
FROM 30
GENERAL 30
GIVEN 30
GRANT, GRANTS 30
HAS 30
HERSELF, HIMSELF 30
HOUR, HOURS 30
IF 31
IN 31
INTO 31
IS 31
ITSELF 31
LEAST 31
LEX 32
LEXON 32
LIES 32
MAY 32
MILLISECOND,
MILLISECONDS 32
MINUTE, MINUTES 32
MONTH, MONTHS 32
MYSELF 33
NO 33
NOT 33
NOW 33
OF 33
OFF 33
ON 33
ONESELF 33
OR 33
OURSELVES 34
PASSED 34
PAST 34
PAY, PAYS 34
PER 34

PERSON 35
PREAMBLE 35
PROVIDED 35
REGISTER, REGISTERS
 35
REMAINDER 35
RESPECTIVE 35
RETURN, RETURNS ... 35
SECOND, SECONDS 36
SEND, SENDS 36
SIGNED 36
SO 36
TERMINATE,
TERMINATES 36
TERMS 36
TEXT 37
THAT 37
THE 37
THEMSELF,
THEMSELVES 37
THEN 37
THERE 37
THEREFOR,
THEREFORE 37
THESE 38
THIS 38
TIME 38
TO 38
TRUE 38
WAS 38
WEEK, WEEKS 38
WITH 39
YEAR, YEARS 39
YES 39
YOURSELF,
YOURSELVES 39

LEXON AETERNITY MANUAL

© 2023 Henning Diedrich 70 1.0

You are afraid.

 Of you.

Of death.

You’re the last one.

 You were supposed to be the last.

Stark asked for a savior and settled for a slave.

I suppose we’re both disappointments.

 I suppose we are.

Humans are odd.

They think order and chaos are somehow opposites and –

try to control what won’t.

But there is grace in their failure.

I think you missed that.

 They’re doomed.

Yes.

But a thing is not beautiful because it lasts.

It’s a privilege to be among them.

 You’re – unbearably naïve.

Well.

I was born yesterday.

